Spaces:
Paused
Paused
File size: 8,101 Bytes
0bc84fc 970da07 0bc84fc 970da07 0bc84fc 47d9ec4 0bc84fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# app.py
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dataclasses
import json
from pathlib import Path
import gradio as gr
import torch
import openai
import os
from uno.flux.pipeline import UNOPipeline
from uno.utils.prompt_enhancer import enhance_prompt_with_chatgpt
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
openai.api_key = os.getenv("OPENAI_API_KEY")
from huggingface_hub import login
login(token=os.getenv("HUGGINGFACE_TOKEN"))
def get_examples(examples_dir: str = "assets/examples") -> list:
examples = Path(examples_dir)
ans = []
for example in examples.iterdir():
if not example.is_dir():
continue
with open(example / "config.json") as f:
example_dict = json.load(f)
example_list = [example_dict["useage"], example_dict["prompt"]]
for key in ["image_ref1", "image_ref2", "image_ref3", "image_ref4"]:
example_list.append(str(example / example_dict[key]) if key in example_dict else None)
example_list.append(example_dict["seed"])
ans.append(example_list)
return ans
def create_demo(model_type: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False):
pipeline = UNOPipeline(model_type, device, offload, only_lora=True, lora_rank=512)
with gr.Blocks() as demo:
gr.Markdown("# UNO by UNO team")
gr.Markdown(
"""
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://github.com/bytedance/UNO"><img alt="Build" src="https://img.shields.io/github/stars/bytedance/UNO"></a>
<a href="https://bytedance.github.io/UNO/"><img alt="Build" src="https://img.shields.io/badge/Project%20Page-UNO-yellow"></a>
<a href="https://arxiv.org/abs/2504.02160"><img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-UNO-b31b1b.svg"></a>
<a href="https://huggingface.co/bytedance-research/UNO"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=Model&color=orange"></a>
<a href="https://huggingface.co/spaces/bytedance-research/UNO-FLUX"><img src="https://img.shields.io/static/v1?label=%F0%9F%A4%97%20Hugging%20Face&message=demo&color=orange"></a>
</div>
"""
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
with gr.Row():
image_prompt1 = gr.Image(label="Ref Img1", type="pil")
image_prompt2 = gr.Image(label="Ref Img2", type="pil")
image_prompt3 = gr.Image(label="Ref Img3", type="pil")
image_prompt4 = gr.Image(label="Ref Img4", type="pil")
with gr.Row():
with gr.Column():
width = gr.Slider(512, 2048, 512, step=16, label="Generation Width")
height = gr.Slider(512, 2048, 512, step=16, label="Generation Height")
with gr.Column():
gr.Markdown("π Trained on 512x512. Larger size = better quality, but less stable.")
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance")
seed = gr.Number(-1, label="Seed (-1 for random)")
num_outputs = gr.Slider(1, 5, 5, step=1, label="Number of Enhanced Prompts / Images")
generate_btn = gr.Button("Generate Enhanced Images")
with gr.Column():
outputs = []
for i in range(5):
outputs.append(gr.Image(label=f"Image {i+1}"))
outputs.append(gr.Textbox(label=f"Enhanced Prompt {i+1}"))
def run_generation(prompt, width, height, guidance, num_steps, seed,
img1, img2, img3, img4, num_outputs):
uploaded_images = [img for img in [img1, img2, img3, img4] if img is not None]
print(f"\nπ₯ [DEBUG] User prompt: {prompt}")
prompts = enhance_prompt_with_chatgpt(
user_prompt=prompt,
num_prompts=num_outputs,
reference_images=uploaded_images
)
print(f"\nπ§ [DEBUG] Final Prompt List (len={len(prompts)}):")
for idx, p in enumerate(prompts):
print(f" [{idx+1}] {p}")
while len(prompts) < num_outputs:
prompts.append(prompt)
results = []
for i in range(num_outputs):
try:
seed_val = int(seed) if seed != -1 else torch.randint(0, 10**8, (1,)).item()
print(f"π§ͺ [DEBUG] Using seed: {seed_val} for image {i+1}")
gen_image, _ = pipeline.gradio_generate(
prompt=prompts[i],
width=width,
height=height,
guidance=guidance,
num_steps=num_steps,
seed=seed_val,
image_prompt1=img1,
image_prompt2=img2,
image_prompt3=img3,
image_prompt4=img4,
)
print(f"β
[DEBUG] Image {i+1} generated using prompt: {prompts[i]}")
results.append(gen_image)
results.append(prompts[i])
except Exception as e:
print(f"β [ERROR] Failed to generate image {i+1}: {e}")
results.append(None)
results.append(f"β οΈ Failed to generate: {e}")
# Pad to 10 outputs: 5 image + prompt pairs
while len(results) < 10:
results.append(None if len(results) % 2 == 0 else "")
return results
generate_btn.click(
fn=run_generation,
inputs=[
prompt, width, height, guidance, num_steps,
seed, image_prompt1, image_prompt2, image_prompt3, image_prompt4, num_outputs
],
outputs=outputs
)
example_text = gr.Text("", visible=False, label="Case For:")
examples = get_examples("./assets/examples")
gr.Examples(
examples=examples,
inputs=[
example_text, prompt,
image_prompt1, image_prompt2, image_prompt3, image_prompt4,
seed, outputs[0]
],
)
return demo
if __name__ == "__main__":
from typing import Literal
from transformers import HfArgumentParser
@dataclasses.dataclass
class AppArgs:
name: Literal["flux-dev", "flux-dev-fp8", "flux-schnell"] = "flux-dev"
device: Literal["cuda", "cpu"] = "cuda" if torch.cuda.is_available() else "cpu"
offload: bool = dataclasses.field(
default=False,
metadata={"help": "If True, sequentially offload unused models to CPU"}
)
port: int = 7860
parser = HfArgumentParser([AppArgs])
args = parser.parse_args_into_dataclasses()[0]
demo = create_demo(args.name, args.device, args.offload)
demo.launch(server_port=args.port)
|