Update app.py
Browse files
app.py
CHANGED
@@ -4,13 +4,14 @@ import gradio as gr
|
|
4 |
from dotenv import load_dotenv
|
5 |
from groq import Groq
|
6 |
|
7 |
-
# Load environment variables
|
8 |
load_dotenv()
|
9 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
10 |
|
11 |
-
# Instantiate
|
12 |
client = Groq(api_key=GROQ_API_KEY)
|
13 |
|
|
|
14 |
def extract_text_from_pdf(pdf_file):
|
15 |
text = ""
|
16 |
with pdfplumber.open(pdf_file.name) as pdf:
|
@@ -20,37 +21,58 @@ def extract_text_from_pdf(pdf_file):
|
|
20 |
text += page_text
|
21 |
return text
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
|
|
|
|
|
|
|
33 |
try:
|
34 |
response = client.chat.completions.create(
|
35 |
-
messages=[
|
36 |
-
|
37 |
-
"role": "user",
|
38 |
-
"content": prompt
|
39 |
-
}
|
40 |
-
],
|
41 |
-
model="llama3-8b-8192", # Replace with your desired model ID
|
42 |
)
|
43 |
return response.choices[0].message.content.strip()
|
44 |
except Exception as e:
|
45 |
return f"Error during summarization: {e}"
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Gradio interface
|
48 |
iface = gr.Interface(
|
49 |
fn=summarize_pdf,
|
50 |
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
|
51 |
outputs="text",
|
52 |
-
title="PDF Summarizer with Groq",
|
53 |
-
description="Upload a PDF and get
|
54 |
)
|
55 |
|
56 |
if __name__ == "__main__":
|
|
|
4 |
from dotenv import load_dotenv
|
5 |
from groq import Groq
|
6 |
|
7 |
+
# Load environment variables
|
8 |
load_dotenv()
|
9 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
10 |
|
11 |
+
# Instantiate Groq client
|
12 |
client = Groq(api_key=GROQ_API_KEY)
|
13 |
|
14 |
+
# Function to extract text from PDF
|
15 |
def extract_text_from_pdf(pdf_file):
|
16 |
text = ""
|
17 |
with pdfplumber.open(pdf_file.name) as pdf:
|
|
|
21 |
text += page_text
|
22 |
return text
|
23 |
|
24 |
+
# Split text into manageable chunks (by character count)
|
25 |
+
def split_text_into_chunks(text, max_chars=2000):
|
26 |
+
words = text.split()
|
27 |
+
chunks = []
|
28 |
+
chunk = ""
|
29 |
|
30 |
+
for word in words:
|
31 |
+
if len(chunk) + len(word) + 1 <= max_chars:
|
32 |
+
chunk += " " + word
|
33 |
+
else:
|
34 |
+
chunks.append(chunk.strip())
|
35 |
+
chunk = word
|
36 |
+
if chunk:
|
37 |
+
chunks.append(chunk.strip())
|
38 |
|
39 |
+
return chunks
|
40 |
|
41 |
+
# Summarize a single chunk using Groq
|
42 |
+
def summarize_chunk(chunk):
|
43 |
+
prompt = f"Summarize the following PDF section:\n\n{chunk}"
|
44 |
try:
|
45 |
response = client.chat.completions.create(
|
46 |
+
messages=[{"role": "user", "content": prompt}],
|
47 |
+
model="llama3-8b-8192",
|
|
|
|
|
|
|
|
|
|
|
48 |
)
|
49 |
return response.choices[0].message.content.strip()
|
50 |
except Exception as e:
|
51 |
return f"Error during summarization: {e}"
|
52 |
|
53 |
+
# Main summarization function
|
54 |
+
def summarize_pdf(pdf_file):
|
55 |
+
text = extract_text_from_pdf(pdf_file)
|
56 |
+
if not text.strip():
|
57 |
+
return "No extractable text found in the PDF."
|
58 |
+
|
59 |
+
chunks = split_text_into_chunks(text, max_chars=2000)
|
60 |
+
summaries = []
|
61 |
+
|
62 |
+
for i, chunk in enumerate(chunks):
|
63 |
+
summary = summarize_chunk(chunk)
|
64 |
+
summaries.append(f"🔹 **Section {i+1} Summary:**\n{summary}\n")
|
65 |
+
|
66 |
+
final_summary = "\n".join(summaries)
|
67 |
+
return final_summary
|
68 |
+
|
69 |
# Gradio interface
|
70 |
iface = gr.Interface(
|
71 |
fn=summarize_pdf,
|
72 |
inputs=gr.File(label="Upload PDF", file_types=[".pdf"]),
|
73 |
outputs="text",
|
74 |
+
title="📄 PDF Summarizer with Groq",
|
75 |
+
description="Upload a large PDF and get section-wise AI summaries using Groq's LLaMA3 model."
|
76 |
)
|
77 |
|
78 |
if __name__ == "__main__":
|