import torch import gradio as gr # Use a pipeline as a high-level helper from transformers import pipeline text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.bfloat16) def summary(input): output = text_summary(input) return output[0]['summary_text'] gr.close_all() demo = gr.Interface(fn=summary, inputs=[gr.Textbox(label="Input Text to Summarize", lines=6)], outputs=[gr.Textbox(label="Summarized Text", lines=4)], title="Text Summarizer", description="This Application will be used to Summarize text") demo.launch()