from sklearn.model_selection import train_test_split from sklearn.svm import SVC import pandas as pd import pickle import os class ModelTrainer: def __init__(self): self.model = None def train_model(self, data_path): """Train the SVM model with the provided dataset""" if not os.path.exists(data_path): raise FileNotFoundError(f"The data file at {data_path} does not exist.") # Load and preprocess data df = pd.read_csv(data_path) X = df.drop(columns=['Outcome']) y = df['Outcome'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=56) # Train the SVM model print("Training the SVM model...") self.model = SVC(C=1, kernel='linear', probability=True) self.model.fit(X_train, y_train) print("Model training completed.") # Save the model model_dir = "src/models" os.makedirs(model_dir, exist_ok=True) with open(f"{model_dir}/svm_model.pkl", 'wb') as f: pickle.dump(self.model, f) print("Model saved successfully.") #def load_model(self): if __name__ == "__main__": trainer = ModelTrainer() trainer.train_model("data/scaled_data.csv") print("Model training completed.") # This line is added to the original script