File size: 3,812 Bytes
6b0e1c6 08185ee 6b0e1c6 973080b 2182e54 5c74749 2182e54 8a05cda 6b0e1c6 5e4cafb 6b0e1c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
title: AI_powered_Diabetes-prediction-app
emoji: 🚀
colorFrom: gray
colorTo: green
sdk: docker
sdk_version: latest
app_file: src/app/app.py
pinned: true
license: apache-2.0
---
# DiabetesPred: AI-Powered Glycemic Risk Assessment System
## Overview
DiabetesPred is an advanced machine learning system designed to assess diabetes risk and provide personalized health recommendations. By analyzing key health metrics, the system delivers accurate risk predictions alongside actionable lifestyle guidance, empowering users to make informed health decisions.
## Core Capabilities
### Risk Assessment Engine
- Leverages machine learning for precise diabetes risk classification
- Processes multiple health parameters including glucose levels, blood pressure, BMI, and insulin
- Delivers confidence-scored predictions based on comprehensive health data analysis
### Smart Recommendation System
The system generates tailored health guidance across four key domains:
- Nutrition & Diet Management
- Physical Activity Planning
- Lifestyle Optimization
- Health Monitoring Protocols
### Intelligent Data Processing
- Robust data validation and anomaly detection
- Advanced feature engineering for improved prediction accuracy
- Standardized input processing for consistent results
## Technical Architecture
### Input Processing Layer
Handles critical health metrics including:
- Glucose measurements
- Blood pressure readings
- BMI calculations
- Insulin levels
- Age-related factors
- Diabetes pedigree function
- Skin thickness measurements
### ML Pipeline Components
- Data cleaning and normalization
- Feature scaling and selection
- Model training with hyperparameter optimization
- Performance evaluation using F1-score, Precision, and Recall
### Output Generation
- Clear HTML-based reporting
- Confidence-scored predictions
- Structured health recommendations
- Actionable insights presentation
## Implementation Highlights
### Data Integrity
- Comprehensive validation checks for input parameters
- Anomaly detection for unrealistic health metrics
- Error handling with informative user feedback
### Intelligence Layer
- Advanced supervised learning algorithms
- Feature importance analysis
- Dynamic recommendation generation via GenAI API
### User Experience
- Clean, intuitive HTML reports
- Categorized health insights
- Clear action items and next steps
## Development Roadmap
### Immediate Pipeline
- Enhanced feature set integration
- Advanced visualization capabilities
- Mobile platform adaptation
### Future Enhancements
- Real-time monitoring capabilities
- Extended health metrics support
- AI explainability features
- Progress tracking visualization
## Technical Requirements
### System Dependencies
- Python 3.8+
- Machine Learning Framework (TensorFlow/PyTorch)
- GenAI API access
- HTML rendering capabilities
### Input Data Format
All health metrics should be provided in standard medical units:
- Glucose: mg/dL
- Blood Pressure: mmHg
- BMI: kg/m²
- Insulin: μU/mL
## Impact and Applications
### Healthcare Providers
- Rapid patient risk assessment
- Data-driven treatment planning
- Automated health recommendations
### Individual Users
- Proactive health monitoring
- Personalized lifestyle guidance
- Early risk detection
### Research Applications
- Population health analysis
- Risk factor correlation studies
- Treatment efficacy assessment
## Project Status
Current Version: 1.0.0
- Stable production release
- Validated prediction model
- Integrated recommendation system
- HTML report generation.
## Contributing
We welcome contributions in the following areas:
- Model optimization
- Feature engineering
- User interface enhancement
- Documentation improvement
## License
[Insert License Information]
## Contact
[Insert Project Contact Information] |