lmy0802 commited on
Commit
4daa863
·
verified ·
1 Parent(s): 1537fc2

Upload 111 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. dividing_into_different_subsets_mbpp/.idea/.gitignore +8 -0
  2. dividing_into_different_subsets_mbpp/.idea/deployment.xml +56 -0
  3. dividing_into_different_subsets_mbpp/.idea/dividing_into_different_subsets_mbpp.iml +8 -0
  4. dividing_into_different_subsets_mbpp/.idea/inspectionProfiles/profiles_settings.xml +6 -0
  5. dividing_into_different_subsets_mbpp/.idea/misc.xml +7 -0
  6. dividing_into_different_subsets_mbpp/.idea/modules.xml +8 -0
  7. dividing_into_different_subsets_mbpp/.idea/workspace.xml +79 -0
  8. dividing_into_different_subsets_mbpp/3/EI/CC_EI.csv +9 -0
  9. dividing_into_different_subsets_mbpp/3/EI/EI.json +0 -0
  10. dividing_into_different_subsets_mbpp/3/EI/calculate_humaneval_result.py +125 -0
  11. dividing_into_different_subsets_mbpp/3/EI/count_num.py +10 -0
  12. dividing_into_different_subsets_mbpp/3/EI/even.py +47 -0
  13. dividing_into_different_subsets_mbpp/3/EI/mbpp.json +0 -0
  14. dividing_into_different_subsets_mbpp/3/EI/mbpp_with_token+cc.json +0 -0
  15. dividing_into_different_subsets_mbpp/3/EI/sub_mbpp.json +0 -0
  16. dividing_into_different_subsets_mbpp/3/EI/token_counts_EI.csv +10 -0
  17. dividing_into_different_subsets_mbpp/3/QS/CC_QS.csv +9 -0
  18. dividing_into_different_subsets_mbpp/3/QS/QS.json +0 -0
  19. dividing_into_different_subsets_mbpp/3/QS/calculate_humaneval_result.py +125 -0
  20. dividing_into_different_subsets_mbpp/3/QS/even.py +50 -0
  21. dividing_into_different_subsets_mbpp/3/QS/flagged/log.csv +2 -0
  22. dividing_into_different_subsets_mbpp/3/QS/mbpp.json +0 -0
  23. dividing_into_different_subsets_mbpp/3/QS/sub_mbpp.json +0 -0
  24. dividing_into_different_subsets_mbpp/3/QS/token_counts_QS.csv +9 -0
  25. dividing_into_different_subsets_mbpp/4/EI/CC_EI.csv +10 -0
  26. dividing_into_different_subsets_mbpp/4/EI/EI.json +0 -0
  27. dividing_into_different_subsets_mbpp/4/EI/calculate_humaneval_result.py +143 -0
  28. dividing_into_different_subsets_mbpp/4/EI/even.py +51 -0
  29. dividing_into_different_subsets_mbpp/4/EI/mbpp.json +0 -0
  30. dividing_into_different_subsets_mbpp/4/EI/mbpp_with_token+cc.json +0 -0
  31. dividing_into_different_subsets_mbpp/4/EI/sub_mbpp.json +0 -0
  32. dividing_into_different_subsets_mbpp/4/EI/token_counts_EI.csv +10 -0
  33. dividing_into_different_subsets_mbpp/4/QS/CC_QS.csv +10 -0
  34. dividing_into_different_subsets_mbpp/4/QS/QS.json +0 -0
  35. dividing_into_different_subsets_mbpp/4/QS/calculate_humaneval_result.py +143 -0
  36. dividing_into_different_subsets_mbpp/4/QS/even.py +65 -0
  37. dividing_into_different_subsets_mbpp/4/QS/mbpp.json +0 -0
  38. dividing_into_different_subsets_mbpp/4/QS/mbpp_with_token+cc.json +0 -0
  39. dividing_into_different_subsets_mbpp/4/QS/sub_mbpp.json +0 -0
  40. dividing_into_different_subsets_mbpp/4/QS/token_counts_QS.csv +10 -0
  41. dividing_into_different_subsets_mbpp/5/EI/CC_EI.csv +9 -0
  42. dividing_into_different_subsets_mbpp/5/EI/EI.json +0 -0
  43. dividing_into_different_subsets_mbpp/5/EI/calculate_humaneval_result.py +167 -0
  44. dividing_into_different_subsets_mbpp/5/EI/even.py +54 -0
  45. dividing_into_different_subsets_mbpp/5/EI/mbpp.json +0 -0
  46. dividing_into_different_subsets_mbpp/5/EI/mbpp_with_token+cc.json +0 -0
  47. dividing_into_different_subsets_mbpp/5/EI/sub_mbpp.json +0 -0
  48. dividing_into_different_subsets_mbpp/5/EI/token_counts_EI.csv +9 -0
  49. dividing_into_different_subsets_mbpp/5/QS/CC_QS.csv +9 -0
  50. dividing_into_different_subsets_mbpp/5/QS/QS.json +0 -0
dividing_into_different_subsets_mbpp/.idea/.gitignore ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # 默认忽略的文件
2
+ /shelf/
3
+ /workspace.xml
4
+ # 基于编辑器的 HTTP 客户端请求
5
+ /httpRequests/
6
+ # Datasource local storage ignored files
7
+ /dataSources/
8
+ /dataSources.local.xml
dividing_into_different_subsets_mbpp/.idea/deployment.xml ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="PublishConfigData" remoteFilesAllowedToDisappearOnAutoupload="false">
4
+ <serverData>
5
+ <paths name="[email protected]:37457 password">
6
+ <serverdata>
7
+ <mappings>
8
+ <mapping local="$PROJECT_DIR$" web="/" />
9
+ </mappings>
10
+ </serverdata>
11
+ </paths>
12
+ <paths name="[email protected]:37457 password (2)">
13
+ <serverdata>
14
+ <mappings>
15
+ <mapping local="$PROJECT_DIR$" web="/" />
16
+ </mappings>
17
+ </serverdata>
18
+ </paths>
19
+ <paths name="[email protected]:37457 password (3)">
20
+ <serverdata>
21
+ <mappings>
22
+ <mapping local="$PROJECT_DIR$" web="/" />
23
+ </mappings>
24
+ </serverdata>
25
+ </paths>
26
+ <paths name="[email protected]:37457 password (4)">
27
+ <serverdata>
28
+ <mappings>
29
+ <mapping local="$PROJECT_DIR$" web="/" />
30
+ </mappings>
31
+ </serverdata>
32
+ </paths>
33
+ <paths name="[email protected]:37457 password (5)">
34
+ <serverdata>
35
+ <mappings>
36
+ <mapping local="$PROJECT_DIR$" web="/" />
37
+ </mappings>
38
+ </serverdata>
39
+ </paths>
40
+ <paths name="[email protected]:37457 password (6)">
41
+ <serverdata>
42
+ <mappings>
43
+ <mapping local="$PROJECT_DIR$" web="/" />
44
+ </mappings>
45
+ </serverdata>
46
+ </paths>
47
+ <paths name="[email protected]:33796 password">
48
+ <serverdata>
49
+ <mappings>
50
+ <mapping local="$PROJECT_DIR$" web="/" />
51
+ </mappings>
52
+ </serverdata>
53
+ </paths>
54
+ </serverData>
55
+ </component>
56
+ </project>
dividing_into_different_subsets_mbpp/.idea/dividing_into_different_subsets_mbpp.iml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <module type="PYTHON_MODULE" version="4">
3
+ <component name="NewModuleRootManager">
4
+ <content url="file://$MODULE_DIR$" />
5
+ <orderEntry type="jdk" jdkName="Python 3.8 (16)" jdkType="Python SDK" />
6
+ <orderEntry type="sourceFolder" forTests="false" />
7
+ </component>
8
+ </module>
dividing_into_different_subsets_mbpp/.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
dividing_into_different_subsets_mbpp/.idea/misc.xml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="Black">
4
+ <option name="sdkName" value="Python 3.8 (16)" />
5
+ </component>
6
+ <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (16)" project-jdk-type="Python SDK" />
7
+ </project>
dividing_into_different_subsets_mbpp/.idea/modules.xml ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="ProjectModuleManager">
4
+ <modules>
5
+ <module fileurl="file://$PROJECT_DIR$/.idea/dividing_into_different_subsets_mbpp.iml" filepath="$PROJECT_DIR$/.idea/dividing_into_different_subsets_mbpp.iml" />
6
+ </modules>
7
+ </component>
8
+ </project>
dividing_into_different_subsets_mbpp/.idea/workspace.xml ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0" encoding="UTF-8"?>
2
+ <project version="4">
3
+ <component name="AutoImportSettings">
4
+ <option name="autoReloadType" value="SELECTIVE" />
5
+ </component>
6
+ <component name="ChangeListManager">
7
+ <list default="true" id="296a4530-732e-4c33-96c5-67af904f859e" name="更改" comment="" />
8
+ <option name="SHOW_DIALOG" value="false" />
9
+ <option name="HIGHLIGHT_CONFLICTS" value="true" />
10
+ <option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
11
+ <option name="LAST_RESOLUTION" value="IGNORE" />
12
+ </component>
13
+ <component name="FileTemplateManagerImpl">
14
+ <option name="RECENT_TEMPLATES">
15
+ <list>
16
+ <option value="Python Script" />
17
+ </list>
18
+ </option>
19
+ </component>
20
+ <component name="ProjectColorInfo"><![CDATA[{
21
+ "associatedIndex": 7
22
+ }]]></component>
23
+ <component name="ProjectId" id="2nsh3www4h2kuEzmrz6ssDck37R" />
24
+ <component name="ProjectViewState">
25
+ <option name="hideEmptyMiddlePackages" value="true" />
26
+ <option name="showLibraryContents" value="true" />
27
+ </component>
28
+ <component name="PropertiesComponent"><![CDATA[{
29
+ "keyToString": {
30
+ "Python.count_num.executor": "Run",
31
+ "Python.even.executor": "Run",
32
+ "RunOnceActivity.OpenProjectViewOnStart": "true",
33
+ "RunOnceActivity.ShowReadmeOnStart": "true",
34
+ "last_opened_file_path": "E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets_mbpp/8/QS",
35
+ "node.js.detected.package.eslint": "true",
36
+ "node.js.detected.package.tslint": "true",
37
+ "node.js.selected.package.eslint": "(autodetect)",
38
+ "node.js.selected.package.tslint": "(autodetect)",
39
+ "nodejs_package_manager_path": "npm",
40
+ "settings.editor.selected.configurable": "com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable",
41
+ "vue.rearranger.settings.migration": "true"
42
+ }
43
+ }]]></component>
44
+ <component name="RecentsManager">
45
+ <key name="CopyFile.RECENT_KEYS">
46
+ <recent name="E:\python-testn\pythonProject3\hh_2\dividing_into_different_subsets_mbpp\8\QS" />
47
+ <recent name="E:\python-testn\pythonProject3\hh_2\dividing_into_different_subsets_mbpp\8\EI" />
48
+ <recent name="E:\python-testn\pythonProject3\hh_2\dividing_into_different_subsets_mbpp\7\QS" />
49
+ <recent name="E:\python-testn\pythonProject3\hh_2\dividing_into_different_subsets_mbpp\7\EI" />
50
+ <recent name="E:\python-testn\pythonProject3\hh_2\dividing_into_different_subsets_mbpp\6\QS" />
51
+ </key>
52
+ </component>
53
+ <component name="SharedIndexes">
54
+ <attachedChunks>
55
+ <set>
56
+ <option value="bundled-python-sdk-d68999036c7f-b11f5e8da5ad-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-233.14475.56" />
57
+ </set>
58
+ </attachedChunks>
59
+ </component>
60
+ <component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="应用程序级" UseSingleDictionary="true" transferred="true" />
61
+ <component name="TaskManager">
62
+ <task active="true" id="Default" summary="默认任务">
63
+ <changelist id="296a4530-732e-4c33-96c5-67af904f859e" name="更改" comment="" />
64
+ <created>1729767497954</created>
65
+ <option name="number" value="Default" />
66
+ <option name="presentableId" value="Default" />
67
+ <updated>1729767497954</updated>
68
+ <workItem from="1729767500446" duration="2417000" />
69
+ </task>
70
+ <servers />
71
+ </component>
72
+ <component name="TypeScriptGeneratedFilesManager">
73
+ <option name="version" value="3" />
74
+ </component>
75
+ <component name="com.intellij.coverage.CoverageDataManagerImpl">
76
+ <SUITE FILE_PATH="coverage/dividing_into_different_subsets_mbpp$count_num.coverage" NAME="count_num 覆盖结果" MODIFIED="1729768553330" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/3/EI" />
77
+ <SUITE FILE_PATH="coverage/dividing_into_different_subsets_mbpp$even.coverage" NAME="even 覆盖结果" MODIFIED="1729769627764" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$/8/QS" />
78
+ </component>
79
+ </project>
dividing_into_different_subsets_mbpp/3/EI/CC_EI.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Model,CC_subset_1,CC_subset_2,CC_subset_3
2
+ CodeGemma-2b,44.83,22.0,0.0
3
+ CodeGemma-7b-it,52.78,44.0,0.0
4
+ CodeGemma-7b,59.7,38.67,0.0
5
+ DeepSeekCoder-1.3b-base,41.15,28.67,0.0
6
+ DeepSeekCoder-6.7b-base,60.04,50.0,50.0
7
+ DeepSeekCoder-6.7b-instruct,65.03,55.17,100.0
8
+ codeqwen2.5-1.5b,70.0,52.94,50.0
9
+ codeqwen2.5-7b,78.16,52.94,50.0
dividing_into_different_subsets_mbpp/3/EI/EI.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/3/EI/calculate_humaneval_result.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import csv
4
+ # 定义文件所在的目录
5
+ input_dir = 'E:\python-testn\pythonProject3\hh_2\evaluate_result_mbpp'
6
+
7
+ # 获取目录中的所有文件
8
+ files = os.listdir(input_dir)
9
+
10
+ with open("token_counts_EI.csv","w", newline='') as csvfile:
11
+ writer = csv.writer(csvfile)
12
+ writer.writerow(["Model", "token_subset_1", "token_subset_2","token_subset_3"])
13
+
14
+
15
+
16
+
17
+ with open("CC_EI.csv", "w", newline='') as csvfile:
18
+ writer = csv.writer(csvfile)
19
+ writer.writerow(["Model", "CC_subset_1", "CC_subset_2","CC_subset_3"])
20
+
21
+
22
+
23
+ for file_name in files:
24
+ # 构建完整的文件路径
25
+ input_file_path = os.path.join(input_dir, file_name)
26
+ first_underscore_index = file_name.find('_')
27
+
28
+ # 找到最后一个 - 的位置
29
+ last_dash_index = file_name.rfind('-')
30
+ model_name = file_name[first_underscore_index + 1:last_dash_index]
31
+ print(model_name)
32
+ with open(input_file_path,"r",encoding="utf-8") as file:
33
+ data1=json.load(file)
34
+
35
+ with open("EI.json", "r", encoding="utf-8") as file:
36
+ data2=json.load(file)
37
+ sum0=0
38
+ count0=0
39
+ sum1=0
40
+ count1=0
41
+ sum2=0
42
+ count2=0
43
+
44
+ for item1 in data1:
45
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
46
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
47
+
48
+ # 在 data2 中找到与 task_id 相同的对象
49
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
50
+
51
+ if item2 is not None:
52
+ if item2["token_diff"] == 0:
53
+ index=item1["task_id"]
54
+ print(item2["token_diff"],index,value)
55
+ sum0=sum0+value
56
+ count0=count0+1
57
+ if item2["token_diff"] == 1:
58
+ index = item1["task_id"]
59
+ print(item2["token_diff"], index, value)
60
+ sum1=sum1+value
61
+ count1=count1+1
62
+ if item2["token_diff"] == 2:
63
+ index = item1["task_id"]
64
+ print(item2["token_diff"], index, value)
65
+ sum2=sum2+value
66
+ count2=count2+1
67
+
68
+ mean0=round(sum0/count0*100,2)
69
+
70
+ mean1=round(sum1/count1*100,2)
71
+ mean2=round(sum2/count2*100,2)
72
+ #print("count_result!!")
73
+ print(count0,count1,count2)
74
+ print(mean0,mean1,mean2)
75
+ with open("token_counts_EI.csv", mode='a', newline='', encoding='utf-8') as file:
76
+ writer = csv.writer(file)
77
+ writer.writerow([model_name,mean0,mean1,mean2])
78
+
79
+ sum0 = 0
80
+ count0 = 0
81
+ sum1 = 0
82
+ count1 = 0
83
+ sum2 = 0
84
+ count2 = 0
85
+ for item1 in data1:
86
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
87
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
88
+
89
+ # 在 data2 中找到与 task_id 相同的对象
90
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
91
+
92
+ if item2 is not None:
93
+ if item2["CC_diff"] == 0:
94
+ index = item1["task_id"]
95
+ print(item2["CC_diff"],index,value)
96
+ sum0=sum0+value
97
+ count0=count0+1
98
+ if item2["CC_diff"] == 1:
99
+ index = item1["task_id"]
100
+ print(item2["CC_diff"], index, value)
101
+ sum1=sum1+value
102
+ count1=count1+1
103
+ if item2["CC_diff"] == 2:
104
+ index = item1["task_id"]
105
+ print(item2["CC_diff"], index, value)
106
+ sum2=sum2+value
107
+ count2=count2+1
108
+
109
+
110
+
111
+ mean0=round(sum0/count0*100,2)
112
+
113
+ mean1=round(sum1/count1*100,2)
114
+ mean2=round(sum2/count2*100,2)
115
+ print("count_result!!")
116
+ print(count0,count1,count2)
117
+ print(mean0,mean1,mean2)
118
+
119
+ with open("CC_EI.csv", mode='a', newline='', encoding='utf-8') as file:
120
+ writer = csv.writer(file)
121
+ writer.writerow([model_name,mean0,mean1,mean2])
122
+
123
+
124
+
125
+
dividing_into_different_subsets_mbpp/3/EI/count_num.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ with open("mbpp_with_token+cc.json","r",encoding="utf-8") as f:
3
+ data = json.load(f)
4
+ i=0
5
+ for item in data:
6
+ item["id"]=i
7
+ i=i+1
8
+ print(i)
9
+ with open('mbpp.json', 'w', encoding='utf-8') as file:
10
+ json.dump(data, file, ensure_ascii=False, indent=4)
dividing_into_different_subsets_mbpp/3/EI/even.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ # 读取数据
4
+ with open("sub_mbpp.json", "r", encoding="utf-8") as f:
5
+ data = json.load(f)
6
+
7
+ # 定义划分区间数
8
+ num_intervals = 3
9
+
10
+ # 计算每个特征的值范围
11
+
12
+
13
+ token_min = min(item['token'] for item in data)
14
+ token_max = max(item['token'] for item in data)
15
+ token_interval_size = (token_max - token_min) / num_intervals
16
+
17
+ cyclomatic_complexity_min = min(item['cc'] for item in data)
18
+ cyclomatic_complexity_max = max(item['cc'] for item in data)
19
+ cyclomatic_complexity_interval_size = (cyclomatic_complexity_max - cyclomatic_complexity_min) / num_intervals
20
+ count1=0
21
+ count2=0
22
+ count3=0
23
+
24
+ # 根据等距划分数据
25
+ for item in data:
26
+
27
+ # 计算 token 特征的区间
28
+ token_diff = int((item['token'] - token_min) // token_interval_size)
29
+ item['token_diff'] = min(token_diff,num_intervals-1)
30
+
31
+
32
+ # 计算 cyclomatic_complexity 特征的区间
33
+ CC_diff = int((item['cc'] - cyclomatic_complexity_min) // cyclomatic_complexity_interval_size)
34
+ item['CC_diff'] = min(CC_diff,num_intervals-1) # 确保区间索引在范围内
35
+ if item['CC_diff']==0:
36
+ count1=count1+1
37
+ if item['CC_diff'] ==1:
38
+ count2 = count2 + 1
39
+ if item['CC_diff']==2:
40
+ count3=count3+1
41
+ # 恢复原始顺序
42
+ data.sort(key=lambda x: x['id'])
43
+ print(count1,count2,count3)
44
+
45
+ # 将更新后的数据写回JSON文件
46
+ with open('EI.json', 'w', encoding='utf-8') as file:
47
+ json.dump(data, file, ensure_ascii=False, indent=4)
dividing_into_different_subsets_mbpp/3/EI/mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/3/EI/mbpp_with_token+cc.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/3/EI/sub_mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/3/EI/token_counts_EI.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,token_subset_1,token_subset_2,token_subset_3
2
+ CodeGemma-2b,45.23,23.64,40.0
3
+ CodeGemma-7b-it,54.15,31.82,40.0
4
+ CodeGemma-7b,60.58,35.91,40.0
5
+ DeepSeekCoder-1.3b-base,43.15,12.73,20.0
6
+ DeepSeekCoder-6.7b-base,60.53,47.73,60.0
7
+ DeepSeekCoder-6.7b-instruct,64.75,60.98,80.0
8
+ codeqwen2.5-1.5b,70.57,57.14,25.0
9
+ codeqwen2.5-7b,77.93,67.86,50.0
10
+
dividing_into_different_subsets_mbpp/3/QS/CC_QS.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Model,CC_subset_1,CC_subset_2,CC_subset_3
2
+ CodeGemma-2b,52.97,45.82,31.41
3
+ CodeGemma-7b-it,59.88,53.21,43.29
4
+ CodeGemma-7b,66.3,58.18,50.35
5
+ DeepSeekCoder-1.3b-base,49.82,37.82,33.29
6
+ DeepSeekCoder-6.7b-base,67.88,56.97,53.53
7
+ DeepSeekCoder-6.7b-instruct,67.09,66.88,59.88
8
+ codeqwen2.5-1.5b,71.21,74.24,62.22
9
+ codeqwen2.5-7b,84.09,75.0,71.85
dividing_into_different_subsets_mbpp/3/QS/QS.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/3/QS/calculate_humaneval_result.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import csv
4
+ # 定义文件所在的目录
5
+ input_dir = 'E:\python-testn\pythonProject3\hh_2\evaluate_result_mbpp'
6
+
7
+ # 获取目录中的所有文件
8
+ files = os.listdir(input_dir)
9
+
10
+ with open("token_counts_QS.csv","w", newline='') as csvfile:
11
+ writer = csv.writer(csvfile)
12
+ writer.writerow(["Model", "token_subset_1", "token_subset_2","token_subset_3"])
13
+
14
+
15
+
16
+
17
+ with open("CC_QS.csv", "w", newline='') as csvfile:
18
+ writer = csv.writer(csvfile)
19
+ writer.writerow(["Model", "CC_subset_1", "CC_subset_2","CC_subset_3"])
20
+
21
+
22
+
23
+ for file_name in files:
24
+ # 构建完整的文件路径
25
+ input_file_path = os.path.join(input_dir, file_name)
26
+ first_underscore_index = file_name.find('_')
27
+
28
+ # 找到最后一个 - 的位置
29
+ last_dash_index = file_name.rfind('-')
30
+ model_name = file_name[first_underscore_index + 1:last_dash_index]
31
+ print(model_name)
32
+ with open(input_file_path,"r",encoding="utf-8") as file:
33
+ data1=json.load(file)
34
+
35
+ with open("QS.json", "r", encoding="utf-8") as file:
36
+ data2=json.load(file)
37
+ sum0=0
38
+ count0=0
39
+ sum1=0
40
+ count1=0
41
+ sum2=0
42
+ count2=0
43
+
44
+ for item1 in data1:
45
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
46
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
47
+
48
+ # 在 data2 中找到与 task_id 相同的对象
49
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
50
+
51
+ if item2 is not None:
52
+ if item2["token_diff"] == 0:
53
+ index=item1["task_id"]
54
+ print(item2["token_diff"],index,value)
55
+ sum0=sum0+value
56
+ count0=count0+1
57
+ if item2["token_diff"] == 1:
58
+ index = item1["task_id"]
59
+ print(item2["token_diff"], index, value)
60
+ sum1=sum1+value
61
+ count1=count1+1
62
+ if item2["token_diff"] == 2:
63
+ index = item1["task_id"]
64
+ print(item2["token_diff"], index, value)
65
+ sum2=sum2+value
66
+ count2=count2+1
67
+
68
+ mean0=round(sum0/count0*100,2)
69
+
70
+ mean1=round(sum1/count1*100,2)
71
+ mean2=round(sum2/count2*100,2)
72
+ #print("count_result!!")
73
+ print(count0,count1,count2)
74
+ print(mean0,mean1,mean2)
75
+ with open("token_counts_QS.csv", mode='a', newline='', encoding='utf-8') as file:
76
+ writer = csv.writer(file)
77
+ writer.writerow([model_name,mean0,mean1,mean2])
78
+
79
+ sum0 = 0
80
+ count0 = 0
81
+ sum1 = 0
82
+ count1 = 0
83
+ sum2 = 0
84
+ count2 = 0
85
+ for item1 in data1:
86
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
87
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
88
+
89
+ # 在 data2 中找到与 task_id 相同的对象
90
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
91
+
92
+ if item2 is not None:
93
+ if item2["CC_diff"] == 0:
94
+ index = item1["task_id"]
95
+ print(item2["CC_diff"],index,value)
96
+ sum0=sum0+value
97
+ count0=count0+1
98
+ if item2["CC_diff"] == 1:
99
+ index = item1["task_id"]
100
+ print(item2["CC_diff"], index, value)
101
+ sum1=sum1+value
102
+ count1=count1+1
103
+ if item2["CC_diff"] == 2:
104
+ index = item1["task_id"]
105
+ print(item2["CC_diff"], index, value)
106
+ sum2=sum2+value
107
+ count2=count2+1
108
+
109
+
110
+
111
+ mean0=round(sum0/count0*100,2)
112
+
113
+ mean1=round(sum1/count1*100,2)
114
+ mean2=round(sum2/count2*100,2)
115
+ print("count_result!!")
116
+ print(count0,count1,count2)
117
+ print(mean0,mean1,mean2)
118
+
119
+ with open("CC_QS.csv", mode='a', newline='', encoding='utf-8') as file:
120
+ writer = csv.writer(file)
121
+ writer.writerow([model_name,mean0,mean1,mean2])
122
+
123
+
124
+
125
+
dividing_into_different_subsets_mbpp/3/QS/even.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ with open("sub_mbpp.json", "r", encoding="utf-8") as f:
3
+ data = json.load(f)
4
+
5
+ # token_counts=[33,33,34]
6
+ # token_counts_I=token_counts[0]*0.01*974
7
+ # token_counts_II=token_counts[1]*0.01*974
8
+ # token_counts_III=164-token_counts_I-token_counts_II
9
+ #
10
+ # cyclomatic_complexity=[33,33,34]
11
+ # cyclomatic_complexity_I=cyclomatic_complexity[0]*0.01*974
12
+ # cyclomatic_complexity_II=cyclomatic_complexity[1]*0.01*974
13
+ # cyclomatic_complexity_III=164-cyclomatic_complexity_II-cyclomatic_complexity_I
14
+
15
+ token_counts=[33,33,34]
16
+ token_counts_I=token_counts[0]*0.01*500
17
+ token_counts_II=token_counts[1]*0.01*500
18
+ token_counts_III=164-token_counts_I-token_counts_II
19
+
20
+ cyclomatic_complexity=[33,33,34]
21
+ cyclomatic_complexity_I=cyclomatic_complexity[0]*0.01*500
22
+ cyclomatic_complexity_II=cyclomatic_complexity[1]*0.01*500
23
+ cyclomatic_complexity_III=164-cyclomatic_complexity_II-cyclomatic_complexity_I
24
+
25
+
26
+
27
+ data.sort(key=lambda x: x['token'])
28
+ for i, item in enumerate(data):
29
+ if i < token_counts_I:
30
+ item['token_diff'] = 0
31
+ elif i < token_counts_I + token_counts_II:
32
+ item['token_diff'] = 1
33
+ else:
34
+ item['token_diff'] = 2
35
+
36
+ data.sort(key=lambda x: x['cc'])
37
+ for i, item in enumerate(data):
38
+ if i < cyclomatic_complexity_I:
39
+ item['CC_diff'] = 0
40
+ elif i < cyclomatic_complexity_I + cyclomatic_complexity_II:
41
+ item['CC_diff'] = 1
42
+ else:
43
+ item['CC_diff'] = 2
44
+
45
+
46
+ data.sort(key=lambda x: x['id'])
47
+ # 将更新后的数据写回JSON文件
48
+ with open('QS.json', 'w', encoding='utf-8') as file:
49
+ json.dump(data, file, ensure_ascii=False, indent=4)
50
+
dividing_into_different_subsets_mbpp/3/QS/flagged/log.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ df,Line Plot,flag,username,timestamp
2
+ "{""headers"": [""Model"", ""line_subset_1"", ""line_subset_2"", ""line_subset_3""], ""data"": [[""CodeFuse-DeepSeek-33b"", 81.82, 72.22, 76.36], [""Nxcode-CQ-7B"", 92.09, 88.33, 81.45], [""codegemma-2b"", 44.09, 17.5, 19.64], [""codegemma-7b"", 52.45, 35.19, 31.64], [""codegemma-7b-it"", 66.36, 49.26, 43.73], [""deepseek-coder-1.3b-base"", 47.45, 26.39, 23], [""deepseek-coder-6.7b-base"", 63.36, 39.35, 34.18], [""deepseek_coder-6.7b-instruct"", 85, 66.85, 62.82], [""deepseek_coder_33b-base"", 68, 48.89, 41.27], [""deepseek_coder_33b-instruct"", 82.09, 62.31, 53.91], [""codeqwen1.5-7b"", 59.73, 48.7, 45.64]], ""metadata"": null}",,,,2024-09-22 18:55:59.262701
dividing_into_different_subsets_mbpp/3/QS/mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/3/QS/sub_mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/3/QS/token_counts_QS.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Model,token_subset_1,token_subset_2,token_subset_3
2
+ CodeGemma-2b,50.3,46.79,33.06
3
+ CodeGemma-7b-it,54.67,55.76,45.88
4
+ CodeGemma-7b,62.67,56.85,55.18
5
+ DeepSeekCoder-1.3b-base,44.0,44.24,32.71
6
+ DeepSeekCoder-6.7b-base,64.85,61.21,52.35
7
+ DeepSeekCoder-6.7b-instruct,66.88,64.15,62.8
8
+ codeqwen2.5-1.5b,71.97,70.45,65.19
9
+ codeqwen2.5-7b,83.33,77.27,70.37
dividing_into_different_subsets_mbpp/4/EI/CC_EI.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,CC_subset_1,CC_subset_2,CC_subset_3,CC_subset_4
2
+ CodeGemma-2b,45.35,32.38,20.0,0.0
3
+ CodeGemma-7b-it,53.58,44.13,40.0,0.0
4
+ CodeGemma-7b,60.23,47.62,40.0,0.0
5
+ DeepSeekCoder-1.3b-base,40.37,42.22,20.0,0.0
6
+ DeepSeekCoder-6.7b-base,60.23,55.56,40.0,50.0
7
+ DeepSeekCoder-6.7b-instruct,64.82,60.34,80.0,100.0
8
+ codeqwen2.5-1.5b,70.39,62.86,20.0,100.0
9
+ codeqwen2.5-7b,78.49,68.57,20.0,100.0
10
+
dividing_into_different_subsets_mbpp/4/EI/EI.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/EI/calculate_humaneval_result.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import csv
4
+ # 定义文件所在的目录
5
+ input_dir = 'E:\python-testn\pythonProject3\hh_2\evaluate_result_mbpp'
6
+
7
+ # 获取目录中的所有文件
8
+ files = os.listdir(input_dir)
9
+
10
+ with open("token_counts_EI.csv","w", newline='') as csvfile:
11
+ writer = csv.writer(csvfile)
12
+ writer.writerow(["Model", "token_subset_1", "token_subset_2","token_subset_3","token_subset_4"])
13
+
14
+
15
+
16
+
17
+ with open("CC_EI.csv","w", newline='') as csvfile:
18
+ writer = csv.writer(csvfile)
19
+ writer.writerow(["Model", "CC_subset_1", "CC_subset_2","CC_subset_3","CC_subset_4"])
20
+
21
+
22
+
23
+ for file_name in files:
24
+ # 构建完整的文件路径
25
+ input_file_path = os.path.join(input_dir, file_name)
26
+ first_underscore_index = file_name.find('_')
27
+
28
+ # 找到最后一个 - 的位置
29
+ last_dash_index = file_name.rfind('-')
30
+ model_name = file_name[first_underscore_index + 1:last_dash_index]
31
+ print(model_name)
32
+ with open(input_file_path,"r",encoding="utf-8") as file:
33
+ data1=json.load(file)
34
+
35
+ with open("EI.json","r",encoding="utf-8") as file:
36
+ data2=json.load(file)
37
+ sum0=0
38
+ count0=0
39
+ sum1=0
40
+ count1=0
41
+ sum2=0
42
+ count2=0
43
+ sum3 = 0
44
+ count3 = 0
45
+
46
+ for item1 in data1:
47
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
48
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
49
+
50
+ # 在 data2 中找到与 task_id 相同的对象
51
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
52
+
53
+ if item2 is not None:
54
+ #按照token个数划分后的评估结果
55
+ if item2["token_diff"] == 0:
56
+ index=item1["task_id"]
57
+ print(item2["token_diff"],index,value)
58
+ sum0=sum0+value
59
+ count0=count0+1
60
+ if item2["token_diff"] == 1:
61
+ index = item1["task_id"]
62
+ print(item2["token_diff"], index, value)
63
+ sum1=sum1+value
64
+ count1=count1+1
65
+ if item2["token_diff"] == 2:
66
+ index = item1["task_id"]
67
+ print(item2["token_diff"], index, value)
68
+ sum2=sum2+value
69
+ count2=count2+1
70
+ if item2["token_diff"] == 3:
71
+ index = item1["task_id"]
72
+ print(item2["token_diff"], index, value)
73
+ sum3=sum3+value
74
+ count3=count3+1
75
+ mean0 = round(sum0 / count0 * 100, 2)
76
+
77
+ mean1 = round(sum1 / count1 * 100, 2)
78
+ mean2 = round(sum2 / count2 * 100, 2)
79
+ mean3 = round(sum3 / count3 * 100, 2)
80
+ print("count_result!!")
81
+ print(count0, count1, count2, count3)
82
+ print(mean0, mean1, mean2, mean3)
83
+ with open("token_counts_EI.csv", mode='a', newline='', encoding='utf-8') as file:
84
+ writer = csv.writer(file)
85
+ writer.writerow([model_name,mean0,mean1,mean2,mean3])
86
+
87
+ sum0 = 0
88
+ count0 = 0
89
+ sum1 = 0
90
+ count1 = 0
91
+ sum2 = 0
92
+ count2 = 0
93
+ sum3 = 0
94
+ count3 = 0
95
+ for item1 in data1:
96
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
97
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
98
+
99
+ # 在 data2 中找到与 task_id 相同的对象
100
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
101
+
102
+ if item2 is not None:
103
+
104
+
105
+ #按照圈复杂度划分后的评估结果
106
+ if item2["CC_diff"] == 0:
107
+ index = item1["task_id"]
108
+ print(item2["CC_diff"],index,value)
109
+ sum0=sum0+value
110
+ count0=count0+1
111
+ if item2["CC_diff"] == 1:
112
+ index = item1["task_id"]
113
+ print(item2["CC_diff"], index, value)
114
+ sum1=sum1+value
115
+ count1=count1+1
116
+ if item2["CC_diff"] == 2:
117
+ index = item1["task_id"]
118
+ print(item2["CC_diff"], index, value)
119
+ sum2=sum2+value
120
+ count2=count2+1
121
+ if item2["CC_diff"] == 3 :
122
+ index=item1["task_id"]
123
+ print(item2["CC_diff"], index, value)
124
+ sum3=sum3+value
125
+ count3=count3+1
126
+
127
+
128
+
129
+ mean0=round(sum0/count0*100,2)
130
+
131
+ mean1=round(sum1/count1*100,2)
132
+ mean2=round(sum2/count2*100,2)
133
+ mean3=round(sum3/count3*100,2)
134
+ print("count_result!!")
135
+ print(count0,count1,count2,count3)
136
+ print(mean0,mean1,mean2,mean3)
137
+
138
+
139
+ with open("CC_EI.csv", mode='a', newline='', encoding='utf-8') as file:
140
+ writer = csv.writer(file)
141
+ writer.writerow([model_name,mean0,mean1,mean2,mean3])
142
+
143
+
dividing_into_different_subsets_mbpp/4/EI/even.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ # 读取数据
4
+ with open("sub_mbpp.json", "r", encoding="utf-8") as f:
5
+ data = json.load(f)
6
+
7
+ # 定义划分区间数
8
+ num_intervals = 4
9
+
10
+
11
+
12
+ token_min = min(item['token'] for item in data)
13
+ token_max = max(item['token'] for item in data)
14
+ token_interval_size = (token_max - token_min) / num_intervals
15
+
16
+ cyclomatic_complexity_min = min(item['cc'] for item in data)
17
+ cyclomatic_complexity_max = max(item['cc'] for item in data)
18
+ cyclomatic_complexity_interval_size = (cyclomatic_complexity_max - cyclomatic_complexity_min) / num_intervals
19
+ count1=0
20
+ count2=0
21
+ count3=0
22
+ count4=0
23
+
24
+ # 根据等距划分数据
25
+ for item in data:
26
+
27
+
28
+ # 计算 token 特征的区间
29
+ token_diff = int((item['token'] - token_min) // token_interval_size)
30
+ item['token_diff'] = min(token_diff,num_intervals-1)
31
+ if item['token_diff'] == 0:
32
+ count1 = count1 + 1
33
+ if item['token_diff'] == 1:
34
+ count2 = count2 + 1
35
+ if item['token_diff'] == 2:
36
+ count3 = count3 + 1
37
+ if item['token_diff'] == 3:
38
+ count4 = count4 + 1
39
+
40
+
41
+ # 计算 cyclomatic_complexity 特征的区间
42
+ CC_diff = int((item['cc'] - cyclomatic_complexity_min) // cyclomatic_complexity_interval_size)
43
+ item['CC_diff'] = min(CC_diff,num_intervals-1) # 确保区间索引在范围内
44
+
45
+ # 恢复原始顺序
46
+ data.sort(key=lambda x: x['id'])
47
+ print(count1,count2,count3,count4)
48
+
49
+ # 将更新后的数据写回JSON文件
50
+ with open('EI.json', 'w', encoding='utf-8') as file:
51
+ json.dump(data, file, ensure_ascii=False, indent=4)
dividing_into_different_subsets_mbpp/4/EI/mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/EI/mbpp_with_token+cc.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/EI/sub_mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/EI/token_counts_EI.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,token_subset_1,token_subset_2,token_subset_3,token_subset_4
2
+ CodeGemma-2b,47.37,31.65,28.0,33.33
3
+ CodeGemma-7b-it,54.03,48.17,28.0,33.33
4
+ CodeGemma-7b,59.68,56.0,36.0,33.33
5
+ DeepSeekCoder-1.3b-base,44.57,29.04,10.0,33.33
6
+ DeepSeekCoder-6.7b-base,63.17,48.7,40.0,66.67
7
+ DeepSeekCoder-6.7b-instruct,65.45,60.71,77.78,66.67
8
+ codeqwen2.5-1.5b,69.9,66.67,85.71,33.33
9
+ codeqwen2.5-7b,78.26,74.44,57.14,66.67
10
+
dividing_into_different_subsets_mbpp/4/QS/CC_QS.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,CC_subset_1,CC_subset_2,CC_subset_3,CC_subset_4
2
+ CodeGemma-2b,55.2,46.56,40.96,30.4
3
+ CodeGemma-7b-it,60.0,58.24,46.88,43.04
4
+ CodeGemma-7b,68.48,60.0,55.36,48.96
5
+ DeepSeekCoder-1.3b-base,49.28,43.04,36.48,32.16
6
+ DeepSeekCoder-6.7b-base,65.6,65.6,52.0,54.4
7
+ DeepSeekCoder-6.7b-instruct,68.07,70.83,60.16,59.32
8
+ codeqwen2.5-1.5b,70.0,74.0,69.0,63.64
9
+ codeqwen2.5-7b,87.0,75.0,77.0,68.69
10
+
dividing_into_different_subsets_mbpp/4/QS/QS.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/QS/calculate_humaneval_result.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import csv
4
+ # 定义文件所在的目录
5
+ input_dir = 'E:\python-testn\pythonProject3\hh_2\evaluate_result_mbpp'
6
+
7
+ # 获取目录中的所有文件
8
+ files = os.listdir(input_dir)
9
+
10
+ with open("token_counts_QS.csv","w", newline='') as csvfile:
11
+ writer = csv.writer(csvfile)
12
+ writer.writerow(["Model", "token_subset_1", "token_subset_2","token_subset_3","token_subset_4"])
13
+
14
+
15
+
16
+
17
+ with open("CC_QS.csv","w", newline='') as csvfile:
18
+ writer = csv.writer(csvfile)
19
+ writer.writerow(["Model", "CC_subset_1", "CC_subset_2","CC_subset_3","CC_subset_4"])
20
+
21
+
22
+
23
+ for file_name in files:
24
+ # 构建完整的文件路径
25
+ input_file_path = os.path.join(input_dir, file_name)
26
+ first_underscore_index = file_name.find('_')
27
+
28
+ # 找到最后一个 - 的位置
29
+ last_dash_index = file_name.rfind('-')
30
+ model_name = file_name[first_underscore_index + 1:last_dash_index]
31
+ print(model_name)
32
+ with open(input_file_path,"r",encoding="utf-8") as file:
33
+ data1=json.load(file)
34
+
35
+ with open("QS.json","r",encoding="utf-8") as file:
36
+ data2=json.load(file)
37
+ sum0=0
38
+ count0=0
39
+ sum1=0
40
+ count1=0
41
+ sum2=0
42
+ count2=0
43
+ sum3 = 0
44
+ count3 = 0
45
+
46
+ for item1 in data1:
47
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
48
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
49
+
50
+ # 在 data2 中找到与 task_id 相同的对象
51
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
52
+
53
+ if item2 is not None:
54
+ #按照token个数划分后的评估结果
55
+ if item2["token_diff"] == 0:
56
+ index=item1["task_id"]
57
+ print(item2["token_diff"],index,value)
58
+ sum0=sum0+value
59
+ count0=count0+1
60
+ if item2["token_diff"] == 1:
61
+ index = item1["task_id"]
62
+ print(item2["token_diff"], index, value)
63
+ sum1=sum1+value
64
+ count1=count1+1
65
+ if item2["token_diff"] == 2:
66
+ index = item1["task_id"]
67
+ print(item2["token_diff"], index, value)
68
+ sum2=sum2+value
69
+ count2=count2+1
70
+ if item2["token_diff"] == 3:
71
+ index = item1["task_id"]
72
+ print(item2["token_diff"], index, value)
73
+ sum3=sum3+value
74
+ count3=count3+1
75
+ mean0 = round(sum0 / count0 * 100, 2)
76
+
77
+ mean1 = round(sum1 / count1 * 100, 2)
78
+ mean2 = round(sum2 / count2 * 100, 2)
79
+ mean3 = round(sum3 / count3 * 100, 2)
80
+ print("count_result!!")
81
+ print(count0, count1, count2, count3)
82
+ print(mean0, mean1, mean2, mean3)
83
+ with open("token_counts_QS.csv", mode='a', newline='', encoding='utf-8') as file:
84
+ writer = csv.writer(file)
85
+ writer.writerow([model_name,mean0,mean1,mean2,mean3])
86
+
87
+ sum0 = 0
88
+ count0 = 0
89
+ sum1 = 0
90
+ count1 = 0
91
+ sum2 = 0
92
+ count2 = 0
93
+ sum3 = 0
94
+ count3 = 0
95
+ for item1 in data1:
96
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
97
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
98
+
99
+ # 在 data2 中找到与 task_id 相同的对象
100
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
101
+
102
+ if item2 is not None:
103
+
104
+
105
+ #按照圈复杂度划分后的评估结果
106
+ if item2["CC_diff"] == 0:
107
+ index = item1["task_id"]
108
+ print(item2["CC_diff"],index,value)
109
+ sum0=sum0+value
110
+ count0=count0+1
111
+ if item2["CC_diff"] == 1:
112
+ index = item1["task_id"]
113
+ print(item2["CC_diff"], index, value)
114
+ sum1=sum1+value
115
+ count1=count1+1
116
+ if item2["CC_diff"] == 2:
117
+ index = item1["task_id"]
118
+ print(item2["CC_diff"], index, value)
119
+ sum2=sum2+value
120
+ count2=count2+1
121
+ if item2["CC_diff"] == 3 :
122
+ index=item1["task_id"]
123
+ print(item2["CC_diff"], index, value)
124
+ sum3=sum3+value
125
+ count3=count3+1
126
+
127
+
128
+
129
+ mean0=round(sum0/count0*100,2)
130
+
131
+ mean1=round(sum1/count1*100,2)
132
+ mean2=round(sum2/count2*100,2)
133
+ mean3=round(sum3/count3*100,2)
134
+ print("count_result!!")
135
+ print(count0,count1,count2,count3)
136
+ print(mean0,mean1,mean2,mean3)
137
+
138
+
139
+ with open("CC_QS.csv", mode='a', newline='', encoding='utf-8') as file:
140
+ writer = csv.writer(file)
141
+ writer.writerow([model_name,mean0,mean1,mean2,mean3])
142
+
143
+
dividing_into_different_subsets_mbpp/4/QS/even.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ with open("sub_mbpp.json","r",encoding="utf-8") as f:
3
+ data = json.load(f)
4
+
5
+
6
+ # token_counts=[25,25,25,25]
7
+ # token_counts_I=token_counts[0]*0.01*974
8
+ # token_counts_II=token_counts[1]*0.01*974
9
+ # token_counts_III=token_counts[2]*0.01*974
10
+ # token_counts_IV=token_counts[3]*0.01*974
11
+ #
12
+ #
13
+ #
14
+ # cyclomatic_complexity=[25,25,25,25]
15
+ # cyclomatic_complexity_I=cyclomatic_complexity[0]*0.01*974
16
+ # cyclomatic_complexity_II=cyclomatic_complexity[1]*0.01*974
17
+ # cyclomatic_complexity_III=cyclomatic_complexity[2]*0.01*974
18
+ # cyclomatic_complexity_IV=cyclomatic_complexity[3]*0.01*974
19
+ token_counts=[25,25,25,25]
20
+ token_counts_I=token_counts[0]*0.01*500
21
+ token_counts_II=token_counts[1]*0.01*500
22
+ token_counts_III=token_counts[2]*0.01*500
23
+ token_counts_IV=token_counts[3]*0.01*500
24
+
25
+
26
+
27
+ cyclomatic_complexity=[25,25,25,25]
28
+ cyclomatic_complexity_I=cyclomatic_complexity[0]*0.01*500
29
+ cyclomatic_complexity_II=cyclomatic_complexity[1]*0.01*500
30
+ cyclomatic_complexity_III=cyclomatic_complexity[2]*0.01*500
31
+ cyclomatic_complexity_IV=cyclomatic_complexity[3]*0.01*500
32
+
33
+
34
+
35
+
36
+ data.sort(key=lambda x: x['token'])
37
+ for i, item in enumerate(data):
38
+ if i < token_counts_I:
39
+ item['token_diff'] = 0
40
+ elif i < token_counts_I + token_counts_II:
41
+ item['token_diff'] = 1
42
+ elif i < token_counts_I + token_counts_II+token_counts_III:
43
+ item['token_diff'] = 2
44
+ else:
45
+ item['token_diff'] = 3
46
+
47
+ data.sort(key=lambda x: x['cc'])
48
+ for i, item in enumerate(data):
49
+ if i < cyclomatic_complexity_I:
50
+ item['CC_diff'] = 0
51
+ elif i < cyclomatic_complexity_I + cyclomatic_complexity_II:
52
+ item['CC_diff'] = 1
53
+ elif i < cyclomatic_complexity_I + cyclomatic_complexity_II+cyclomatic_complexity_III:
54
+ item['CC_diff'] = 2
55
+
56
+ else:
57
+ item['CC_diff'] = 3
58
+
59
+
60
+
61
+ data.sort(key=lambda x: x['id'])
62
+ # 将更新后的数据写回JSON文件
63
+ with open('QS.json', 'w', encoding='utf-8') as file:
64
+ json.dump(data, file, ensure_ascii=False, indent=4)
65
+
dividing_into_different_subsets_mbpp/4/QS/mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/QS/mbpp_with_token+cc.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/QS/sub_mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/4/QS/token_counts_QS.csv ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ Model,token_subset_1,token_subset_2,token_subset_3,token_subset_4
2
+ CodeGemma-2b,51.52,44.8,46.08,30.72
3
+ CodeGemma-7b-it,50.4,57.28,54.4,46.08
4
+ CodeGemma-7b,62.08,58.08,58.72,53.92
5
+ DeepSeekCoder-1.3b-base,44.8,44.32,44.96,26.88
6
+ DeepSeekCoder-6.7b-base,63.2,62.4,63.2,48.8
7
+ DeepSeekCoder-6.7b-instruct,66.67,67.2,61.54,62.81
8
+ codeqwen2.5-1.5b,71.0,75.0,63.0,67.68
9
+ codeqwen2.5-7b,83.0,77.0,75.0,72.73
10
+
dividing_into_different_subsets_mbpp/5/EI/CC_EI.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Model,CC_subset_1,CC_subset_2,CC_subset_3,CC_subset_4,CC_subset_5
2
+ CodeGemma-2b,46.95,35.62,19.0,0.0,0.0
3
+ CodeGemma-7b-it,54.79,46.25,38.0,0.0,0.0
4
+ CodeGemma-7b,60.95,54.79,29.0,50.0,0.0
5
+ DeepSeekCoder-1.3b-base,42.37,36.67,25.0,0.0,0.0
6
+ DeepSeekCoder-6.7b-base,61.05,58.33,35.0,50.0,50.0
7
+ DeepSeekCoder-6.7b-instruct,66.49,58.89,52.63,50.0,100.0
8
+ codeqwen2.5-1.5b,69.44,73.44,28.57,33.33,100.0
9
+ codeqwen2.5-7b,78.7,73.44,57.14,0.0,100.0
dividing_into_different_subsets_mbpp/5/EI/EI.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/5/EI/calculate_humaneval_result.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import csv
4
+ # 定义文件所在的目录
5
+ input_dir = 'E:/python-testn/pythonProject3/hh_2/evaluate_result_mbpp'
6
+
7
+ # 获取目录中的所有文件
8
+ files = os.listdir(input_dir)
9
+
10
+ with open("token_counts_EI.csv","w", newline='') as csvfile:
11
+ writer = csv.writer(csvfile)
12
+ writer.writerow(["Model", "token_subset_1", "token_subset_2","token_subset_3","token_subset_4","token_subset_5"])
13
+
14
+
15
+
16
+ with open("CC_EI.csv", "w", newline='') as csvfile:
17
+ writer = csv.writer(csvfile)
18
+ writer.writerow(["Model", "CC_subset_1", "CC_subset_2","CC_subset_3","CC_subset_4","CC_subset_5"])
19
+
20
+
21
+
22
+ for file_name in files:
23
+ # 构建完整的文件路径
24
+ input_file_path = os.path.join(input_dir, file_name)
25
+ first_underscore_index = file_name.find('_')
26
+
27
+ # 找到最后一个 - 的位置
28
+ last_dash_index = file_name.rfind('-')
29
+ model_name = file_name[first_underscore_index + 1:last_dash_index]
30
+ print(model_name)
31
+ with open(input_file_path,"r",encoding="utf-8") as file:
32
+ data1=json.load(file)
33
+
34
+ with open("EI.json", "r", encoding="utf-8") as file:
35
+ data2=json.load(file)
36
+ sum0=0
37
+ count0=0
38
+ sum1=0
39
+ count1=0
40
+ sum2=0
41
+ count2=0
42
+ sum3 = 0
43
+ count3 = 0
44
+ sum4=0
45
+ count4=0
46
+
47
+
48
+ for item1 in data1:
49
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
50
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
51
+
52
+ # 在 data2 中找到与 task_id 相同的对象
53
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
54
+
55
+ if item2 is not None:
56
+
57
+ # #按照token个数划分后的评估结果
58
+ if item2["token_diff"] == 0:
59
+ index=item2["task_id"]
60
+ print(item2["token_diff"],index,value)
61
+ sum0=sum0+value
62
+ count0=count0+1
63
+ if item2["token_diff"] == 1:
64
+ index=item2["task_id"]
65
+ print(item2["token_diff"], index, value)
66
+ sum1=sum1+value
67
+ count1=count1+1
68
+ if item2["token_diff"] == 2:
69
+ index=item2["task_id"]
70
+ print(item2["token_diff"], index, value)
71
+ sum2=sum2+value
72
+ count2=count2+1
73
+ if item2["token_diff"] == 3:
74
+ index=item2["task_id"]
75
+ print(item2["token_diff"], index, value)
76
+ sum3=sum3+value
77
+ count3=count3+1
78
+ if item2["token_diff"] == 4:
79
+ index=item2["task_id"]
80
+ print(item2["token_diff"], index, value)
81
+ sum4 = sum4 + value
82
+ count4 = count4 + 1
83
+ mean0 = round(sum0 / count0 * 100, 2)
84
+
85
+ mean1 = round(sum1 / count1 * 100, 2)
86
+ mean2 = round(sum2 / count2 * 100, 2)
87
+ mean3 = round(sum3 / count3 * 100, 2)
88
+ mean4 = round(sum4 / count4 * 100, 2)
89
+ print("count_result!!")
90
+ print(count0, count1, count2, count3, count4)
91
+ print(mean0, mean1, mean2, mean3, count4)
92
+ with open("token_counts_EI.csv", mode='a', newline='', encoding='utf-8') as file:
93
+ writer = csv.writer(file)
94
+ writer.writerow([model_name,mean0,mean1,mean2,mean3,mean4])
95
+
96
+
97
+
98
+ sum0 = 0
99
+ count0 = 0
100
+ sum1 = 0
101
+ count1 = 0
102
+ sum2 = 0
103
+ count2 = 0
104
+ sum3 = 0
105
+ count3 = 0
106
+ sum4 = 0
107
+ count4 = 0
108
+
109
+ for item1 in data1:
110
+ task_id = item1["task_id"] # 假设 task_id 是 item1 中的一个属性
111
+ value = item1["pass@1"] # 假设 value 是 item1 中的一个属性
112
+
113
+ # 在 data2 中找到与 task_id 相同的对象
114
+ item2 = next((item for item in data2 if item["task_id"] == task_id), None)
115
+
116
+ if item2 is not None:
117
+ #按照圈复杂度划分后的评估结果
118
+ if item2["CC_diff"] == 0:
119
+ index=item2["task_id"]
120
+ print(item2["CC_diff"],index,value)
121
+ sum0=sum0+value
122
+ count0=count0+1
123
+ if item2["CC_diff"] == 1:
124
+ index=item2["task_id"]
125
+ print(item2["CC_diff"], index, value)
126
+ sum1=sum1+value
127
+ count1=count1+1
128
+ if item2["CC_diff"] == 2:
129
+ index=item2["task_id"]
130
+ print(item2["CC_diff"], index, value)
131
+ sum2=sum2+value
132
+ count2=count2+1
133
+ if item2["CC_diff"] == 3 :
134
+ index=item2["task_id"]
135
+ print(item2["CC_diff"], index, value)
136
+ sum3=sum3+value
137
+ count3=count3+1
138
+ if item2["CC_diff"] == 4 :
139
+ index=item2["task_id"]
140
+ print(item2["CC_diff"], index, value)
141
+ sum4=sum4+value
142
+ count4=count4+1
143
+
144
+
145
+
146
+ mean0=round(sum0/count0*100,2)
147
+
148
+ mean1=round(sum1/count1*100,2)
149
+ mean2=round(sum2/count2*100,2)
150
+ mean3=round(sum3/count3*100,2)
151
+ mean4=round(sum4/count4*100,2)
152
+ print("count_result!!")
153
+ print(count0,count1,count2,count3,count4)
154
+ print(mean0,mean1,mean2,mean3,count4)
155
+ # with open("token_counts_EI.csv", mode='a', newline='', encoding='utf-8') as file:
156
+ # writer = csv.writer(file)
157
+ # writer.writerow([model_name,mean0,mean1,mean2,mean3,mean4])
158
+
159
+ # with open("line_counts_EI.csv", mode='a', newline='', encoding='utf-8') as file:
160
+ # writer = csv.writer(file)
161
+ # writer.writerow([model_name,mean0,mean1,mean2,mean3,mean4])
162
+ #
163
+ with open("CC_EI.csv", mode='a', newline='', encoding='utf-8') as file:
164
+ writer = csv.writer(file)
165
+ writer.writerow([model_name,mean0,mean1,mean2,mean3,mean4])
166
+
167
+
dividing_into_different_subsets_mbpp/5/EI/even.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ # 读取数据
4
+ with open("sub_mbpp.json", "r", encoding="utf-8") as f:
5
+ data = json.load(f)
6
+
7
+ # 定义划分区间数
8
+ num_intervals = 5
9
+
10
+
11
+ token_min = min(item['token'] for item in data)
12
+ token_max = max(item['token'] for item in data)
13
+ token_interval_size = (token_max - token_min) / num_intervals
14
+
15
+ cyclomatic_complexity_min = min(item['cc'] for item in data)
16
+ cyclomatic_complexity_max = max(item['cc'] for item in data)
17
+ cyclomatic_complexity_interval_size = (cyclomatic_complexity_max - cyclomatic_complexity_min) / num_intervals
18
+ count1=0
19
+ count2=0
20
+ count3=0
21
+ count4=0
22
+ count5=0
23
+
24
+ # 根据等距划分数据
25
+ for item in data:
26
+ # 计算 line 特征的区间
27
+
28
+
29
+ # 计算 token 特征的区间
30
+ token_diff = int((item['token'] - token_min) // token_interval_size)
31
+ item['token_diff'] = min(token_diff,num_intervals-1)
32
+ if item['token_diff'] == 0:
33
+ count1 = count1 + 1
34
+ if item['token_diff'] == 1:
35
+ count2 = count2 + 1
36
+ if item['token_diff'] == 2:
37
+ count3 = count3 + 1
38
+ if item['token_diff'] == 3:
39
+ count4 = count4 + 1
40
+ if item['token_diff'] == 4:
41
+ count5 = count5 + 1
42
+
43
+
44
+ # 计算 cyclomatic_complexity 特征的区间
45
+ CC_diff = int((item['cc'] - cyclomatic_complexity_min) // cyclomatic_complexity_interval_size)
46
+ item['CC_diff'] = min(CC_diff,num_intervals-1) # 确保区间索引在范围内
47
+
48
+ # 恢复原始顺序
49
+ data.sort(key=lambda x: x['id'])
50
+ print(count1,count2,count3,count4,count5)
51
+
52
+ # 将更新后的数据写回JSON文件
53
+ with open('EI.json', 'w', encoding='utf-8') as file:
54
+ json.dump(data, file, ensure_ascii=False, indent=4)
dividing_into_different_subsets_mbpp/5/EI/mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/5/EI/mbpp_with_token+cc.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/5/EI/sub_mbpp.json ADDED
The diff for this file is too large to render. See raw diff
 
dividing_into_different_subsets_mbpp/5/EI/token_counts_EI.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Model,token_subset_1,token_subset_2,token_subset_3,token_subset_4,token_subset_5
2
+ CodeGemma-2b,49.09,37.09,28.0,50.0,0.0
3
+ CodeGemma-7b-it,54.98,50.05,37.0,50.0,0.0
4
+ CodeGemma-7b,60.22,57.79,38.0,70.0,0.0
5
+ DeepSeekCoder-1.3b-base,44.87,36.88,17.0,25.0,0.0
6
+ DeepSeekCoder-6.7b-base,62.91,55.28,50.0,75.0,50.0
7
+ DeepSeekCoder-6.7b-instruct,66.92,60.42,68.42,100.0,50.0
8
+ codeqwen2.5-1.5b,72.12,65.81,69.23,66.67,0.0
9
+ codeqwen2.5-7b,80.97,72.9,61.54,66.67,50.0
dividing_into_different_subsets_mbpp/5/QS/CC_QS.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ Model,CC_subset_1,CC_subset_2,CC_subset_3,CC_subset_4,CC_subset_5
2
+ CodeGemma-2b,49.4,50.6,48.6,34.2,33.6
3
+ CodeGemma-7b-it,57.2,60.0,55.6,41.0,46.4
4
+ CodeGemma-7b,66.0,66.2,58.4,49.4,51.0
5
+ DeepSeekCoder-1.3b-base,46.4,47.8,37.6,33.2,36.2
6
+ DeepSeekCoder-6.7b-base,64.0,67.0,59.0,51.0,56.0
7
+ DeepSeekCoder-6.7b-instruct,65.96,69.07,64.29,63.27,60.22
8
+ codeqwen2.5-1.5b,70.0,70.0,80.0,58.75,67.09
9
+ codeqwen2.5-7b,86.25,73.75,81.25,72.5,70.89
dividing_into_different_subsets_mbpp/5/QS/QS.json ADDED
The diff for this file is too large to render. See raw diff