lmy0802's picture
Update app.py
41dae7b verified
raw
history blame
15.5 kB
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_checkbox):
num_parts = num_parts_dropdown
current_dir = os.getcwd()
print("当前工作目录的路径:", current_dir)
dataframes = []
if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/token_counts_EI.csv")
dataframes.append(token_counts_df)
if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/line_counts_EI.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
dataframes.append(CC_df)
if token_counts_radio=="Equal Interval Partitioning":
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/CC_EI.csv")
dataframes.append(CC_df)
if problem_type_checkbox:
problem_type_df = pd.read_csv("E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/cata_result.csv")
dataframes.append(problem_type_df)
if len(dataframes) > 0:
combined_df = dataframes[0]
for df in dataframes[1:]:
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')] # 去除重复的列
return combined_df
else:
return pd.DataFrame()
def execute_specified_python_files(directory_list, file_list):
for directory in directory_list:
for py_file in file_list:
file_path = os.path.join(directory, py_file)
if os.path.isfile(file_path) and py_file.endswith('.py'):
print(f"Executing {file_path}...")
try:
# 使用subprocess执行Python文件
subprocess.run(['python', file_path], check=True)
print(f"{file_path} executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error executing {file_path}: {e}")
else:
print(f"File {file_path} does not exist or is not a Python file.")
# 定义一个函数来生成 CSS 样式
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
css = """
#dataframe th {
background-color: #f2f2f2
}
"""
colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
categories = [line_counts, token_counts, cyclomatic_complexity]
category_index = 0
column_index = 1
for category in categories:
if category:
if show_high:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_medium:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_low:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
category_index += 1
# 为 Problem Type 相关的三个子列设置固定颜色
if problem_type:
problem_type_color = "#d4f0fc" # 你可以选择任何你喜欢的颜色
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"
# 隐藏 "data" 标识
css += """
.gradio-container .dataframe-container::before {
content: none !important;
}
"""
return css
# def update_dataframe(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium,
# show_low):
# df = show_data(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low)
# css = generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium,
# show_low)
# return gr.update(value=df), gr.update(value=f"<style>{css}</style>")
def generate_file(file_obj, user_string, user_number,dataset_choice):
tmpdir = 'tmpdir'
print('临时文件夹地址:{}'.format(tmpdir))
FilePath = file_obj.name
print('上传文件的地址:{}'.format(file_obj.name))
shutil.copy(file_obj.name, tmpdir)
FileName = os.path.basename(file_obj.name)
print(FilePath)
with open(FilePath, 'r', encoding="utf-8") as file_obj:
outputPath = os.path.join('F:/Desktop/test', FileName)
data = json.load(file_obj)
print("data:", data)
with open(outputPath, 'w', encoding="utf-8") as w:
json.dump(data, w, ensure_ascii=False, indent=4)
file_content = json.dumps(data)
url = "http://localhost:6222/submit"
files = {'file': (FileName, file_content, 'application/json')}
payload = {
'user_string': user_string,
'user_number': user_number,
'dataset_choice':dataset_choice
}
response = requests.post(url, files=files, data=payload)
print(response)
if response.status_code == 200:
output_data = response.json()
output_file_path = os.path.join('/home/user/app/evaluate_result', 'new-model.json')
with open(output_file_path, 'w', encoding="utf-8") as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
print(f"File saved at: {output_file_path}")
directory_list = ['/home/user/app/dividing_into_different_subsets\5\QS']
file_list = ["calculate_humaneval_result.py"]
execute_specified_python_files(directory_list, file_list)
return {"status": "success", "message": "File received and saved"}
else:
return {"status": "error", "message": response.text}
return {"status": "success", "message": response.text}
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
options = []
if token_counts:
options.append("The Number of Tokens in Problem Descriptions")
if line_counts:
options.append("The Number of Lines in Problem Descriptions")
if cyclomatic_complexity:
options.append("The Complexity of Reference Code")
if problem_type:
options.append("Problem Type")
return gr.update(choices=options)
def plot_csv(radio,num):
if radio=="The Number of Tokens in Problem Descriptions":
radio_choice="token_counts"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Number of Lines in Problem Descriptions":
radio_choice="line_counts"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Complexity of Reference Code":
radio_choice="CC"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'/home/user/app/dividing_into_different_subsets/cata_result.csv'
df = pd.read_csv(file_path)
df.set_index('Model', inplace=True)
df_transposed = df.T
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
title='Model Evaluation Results',
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
color_discrete_sequence=px.colors.qualitative.Plotly)
fig.update_traces(hovertemplate='%{y}')
return fig
import gradio as gr
with gr.Blocks() as iface:
gr.HTML("""
<style>
# body {
# max-width: 50%; /* 设置最大宽度为50% */
# margin: 0 auto; /* 将内容居中 */
# }
.title {
text-align: center;
font-size: 3em;
font-weight: bold;
margin-bottom: 0.5em;
}
.subtitle {
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
</style>
""")
with gr.Tabs() as tabs:
with gr.TabItem("Evaluation Result"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")
with gr.Row():
custom_css = """
<style>
.markdown-class {
font-family: 'Helvetica', sans-serif;
font-size: 20px;
font-weight: bold;
color: #333;
}
</style>
"""
with gr.Column():
gr.Markdown(
f"{custom_css}<div class='markdown-class'> Choose Division Perspective </div>")
token_counts_checkbox = gr.Checkbox(label="I-The Number of Tokens in Problem Descriptions")
line_counts_checkbox = gr.Checkbox(label="II-The Number of Lines in Problem Descriptions")
cyclomatic_complexity_checkbox = gr.Checkbox(label="III-The Complexity of Reference Code")
problem_type_checkbox = gr.Checkbox(label="IV-Problem Types ")
css_code = """
.dropdown-container {
display: none;
}
"""
with gr.Column():
# gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
num_parts_dropdown = gr.Dropdown(choices=[3, 4, 5, 6, 7, 8], label="Choose the Number of Subsets")
with gr.Row():
with gr.Column():
token_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Choose the Division Method for Perspective-I",
visible=False)
with gr.Column():
line_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Choose the Division Method for Perspective-II",
visible=False)
with gr.Column():
cyclomatic_complexity_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Choose the Division Method for Perspective-III",
visible=False)
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
inputs=token_counts_checkbox, outputs=token_counts_radio)
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
inputs=line_counts_checkbox, outputs=line_counts_radio)
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
inputs=cyclomatic_complexity_checkbox,
outputs=cyclomatic_complexity_radio)
with gr.Tabs() as inner_tabs:
with gr.TabItem("Ranking Table"):
dataframe_output = gr.Dataframe(elem_id="dataframe")
css_output = gr.HTML()
confirm_button = gr.Button("Confirm ")
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
line_counts_radio, cyclomatic_complexity_radio,problem_type_checkbox],
outputs=dataframe_output)
with gr.TabItem("Line chart"):
select_radio = gr.Radio(choices=[],label="Select One Perpective")
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
problem_type_checkbox]
for checkbox in checkboxes:
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
select_radio.change(fn=plot_csv, inputs=[select_radio, num_parts_dropdown],
outputs=gr.Plot(label="Line Plot "))
with gr.TabItem("Upload Inference File"):
gr.Markdown("Upload a JSON file")
with gr.Row():
with gr.Column():
string_input = gr.Textbox(label="Enter the Model Name")
number_input = gr.Number(label="Select the Number of Samples")
dataset_choice = gr.Dropdown(label="Select Dataset", choices=["HumanEval", "MBPP"])
with gr.Column():
file_input = gr.File(label="Upload Generation Result in JSON file")
upload_button = gr.Button("Confirm and Upload")
json_output = gr.JSON(label="")
upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
outputs=json_output)
def toggle_radio(checkbox, radio):
return gr.update(visible=checkbox)
css = """
#scale1 {
border: 1px solid rgba(0, 0, 0, 0.2);
padding: 10px;
border-radius: 8px;
background-color: #f9f9f9;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
}
"""
gr.HTML(f"<style>{css}</style>")
iface.launch()