lmy0802's picture
Update app.py
50dac5f verified
raw
history blame
17.2 kB
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_checkbox):
num_parts = num_parts_dropdown
current_dir = os.getcwd()
print("当前工作目录的路径:", current_dir)
dataframes = []
if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
token_counts_df = pd.read_csv(f"home/user/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
token_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num_parts}/EI/token_counts_EI.csv")
dataframes.append(token_counts_df)
if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
line_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
line_counts_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num_parts}/EI/line_counts_EI.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
CC_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
dataframes.append(CC_df)
if token_counts_radio=="Equal Interval Partitioning":
CC_df = pd.read_csv(f"E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num_parts}/EI/CC_EI.csv")
dataframes.append(CC_df)
if problem_type_checkbox:
problem_type_df = pd.read_csv("E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/cata_result.csv")
dataframes.append(problem_type_df)
if len(dataframes) > 0:
combined_df = dataframes[0]
for df in dataframes[1:]:
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')] # 去除重复的列
return combined_df
else:
return pd.DataFrame()
def execute_specified_python_files(directory_list, file_list):
for directory in directory_list:
for py_file in file_list:
file_path = os.path.join(directory, py_file)
if os.path.isfile(file_path) and py_file.endswith('.py'):
print(f"Executing {file_path}...")
try:
# 使用subprocess执行Python文件
subprocess.run(['python', file_path], check=True)
print(f"{file_path} executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error executing {file_path}: {e}")
else:
print(f"File {file_path} does not exist or is not a Python file.")
# 定义一个函数来生成 CSS 样式
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
css = """
#dataframe th {
background-color: #f2f2f2
}
"""
colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
categories = [line_counts, token_counts, cyclomatic_complexity]
category_index = 0
column_index = 1
for category in categories:
if category:
if show_high:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_medium:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_low:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
category_index += 1
# 为 Problem Type 相关的三个子列设置固定颜色
if problem_type:
problem_type_color = "#d4f0fc" # 你可以选择任何你喜欢的颜色
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"
# 隐藏 "data" 标识
css += """
.gradio-container .dataframe-container::before {
content: none !important;
}
"""
return css
# def update_dataframe(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium,
# show_low):
# df = show_data(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low)
# css = generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium,
# show_low)
# return gr.update(value=df), gr.update(value=f"<style>{css}</style>")
def generate_file(file_obj, user_string, user_number,dataset_choice):
tmpdir = 'tmpdir'
print('临时文件夹地址:{}'.format(tmpdir))
FilePath = file_obj.name
print('上传文件的地址:{}'.format(file_obj.name)) # 输出上传后的文件在gradio中保存的绝对地址
# 将文件复制到临时目录中
shutil.copy(file_obj.name, tmpdir)
# 获取上传Gradio的文件名称
FileName = os.path.basename(file_obj.name)
print(FilePath)
# 获取拷贝在临时目录的新的文件地址
# 打开复制到新路径后的文件
with open(FilePath, 'r', encoding="utf-8") as file_obj:
# 在本地电脑打开一个新的文件,并且将上传文件内容写入到新文件
outputPath = os.path.join('F:/Desktop/test', FileName)
data = json.load(file_obj)
print("data:", data)
# 将数据写入新的 JSON 文件
with open(outputPath, 'w', encoding="utf-8") as w:
json.dump(data, w, ensure_ascii=False, indent=4)
# 读取文件内容并上传到服务器
file_content = json.dumps(data) # 将数据转换为 JSON 字符串
url = "http://localhost:6222/submit" # 替换为你的后端服务器地址
files = {'file': (FileName, file_content, 'application/json')}
payload = {
'user_string': user_string,
'user_number': user_number,
'dataset_choice':dataset_choice
}
response = requests.post(url, files=files, data=payload)
print(response)
#返回服务器处理后的文件
if response.status_code == 200:
# 获取服务器返回的 JSON 数据
output_data = response.json()
# 保存 JSON 数据到本地
output_file_path = os.path.join('E:/python-testn/pythonProject3/hh_2/evaluate_result', 'new-model.json')
with open(output_file_path, 'w', encoding="utf-8") as f:
json.dump(output_data, f, ensure_ascii=False, indent=4)
print(f"File saved at: {output_file_path}")
# 调用更新数据文件的函数
directory_list = ['E:\python-testn\pythonProject3\hh_2\dividing_into_different_subsets\5\QS'] # 替换为你的目录路径列表
file_list = ["calculate_humaneval_result.py"] # 替换为你想要执行的Python文件列表
execute_specified_python_files(directory_list, file_list)
return {"status": "success", "message": "File received and saved"}
else:
return {"status": "error", "message": response.text}
# 返回服务器响应
return {"status": "success", "message": response.text}
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
options = []
if token_counts:
options.append("The Number of Tokens in Problem Descriptions")
if line_counts:
options.append("The Number of Lines in Problem Descriptions")
if cyclomatic_complexity:
options.append("The Complexity of Reference Code")
if problem_type:
options.append("Problem Type")
return gr.update(choices=options)
def plot_csv(radio,num):
# 读取本地的CSV文件
#token_counts_df = pd.read_csv(f"{num_parts}/QS/token_counts_QS.csv")
if radio=="The Number of Tokens in Problem Descriptions":
radio_choice="token_counts"
file_path = f'E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Number of Lines in Problem Descriptions":
radio_choice="line_counts"
file_path = f'E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Complexity of Reference Code":
radio_choice="CC"
file_path = f'E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'E:/python-testn/pythonProject3/hh_2/dividing_into_different_subsets/cata_result.csv'
print("test!")
# file_path="E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/3/QS/CC_QS.csv"
df = pd.read_csv(file_path)
# 将第一列作为索引
df.set_index('Model', inplace=True)
# 转置数据框,使得模型作为列,横轴作为行
df_transposed = df.T
# 使用plotly绘制折线图
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
title='Model Evaluation Results',
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
color_discrete_sequence=px.colors.qualitative.Plotly)
# 设置悬停效果
fig.update_traces(hovertemplate='%{y}')
return fig
# 创建 Gradio 界面
import gradio as gr
with gr.Blocks() as iface:
gr.HTML("""
<style>
# body {
# max-width: 50%; /* 设置最大宽度为50% */
# margin: 0 auto; /* 将内容居中 */
# }
.title {
text-align: center;
font-size: 3em;
font-weight: bold;
margin-bottom: 0.5em;
}
.subtitle {
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
</style>
""")
with gr.Tabs() as tabs:
with gr.TabItem("Evaluation Result"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")
with gr.Row():
custom_css = """
<style>
.markdown-class {
font-family: 'Helvetica', sans-serif;
font-size: 20px;
font-weight: bold;
color: #333;
}
</style>
"""
with gr.Column():
gr.Markdown(
f"{custom_css}<div class='markdown-class'> Choose Division Perspective </div>")
token_counts_checkbox = gr.Checkbox(label="I-The Number of Tokens in Problem Descriptions")
line_counts_checkbox = gr.Checkbox(label="II-The Number of Lines in Problem Descriptions")
cyclomatic_complexity_checkbox = gr.Checkbox(label="III-The Complexity of Reference Code")
problem_type_checkbox = gr.Checkbox(label="IV-Problem Types ")
css_code = """
.dropdown-container {
display: none;
}
"""
with gr.Column():
# gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
num_parts_dropdown = gr.Dropdown(choices=[3, 4, 5, 6, 7, 8], label="Choose the Number of Subsets")
with gr.Row():
with gr.Column():
token_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Choose the Division Method for Perspective-I",
visible=False)
with gr.Column():
line_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Choose the Division Method for Perspective-II",
visible=False)
with gr.Column():
cyclomatic_complexity_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"], label="Choose the Division Method for Perspective-III",
visible=False)
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
inputs=token_counts_checkbox, outputs=token_counts_radio)
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
inputs=line_counts_checkbox, outputs=line_counts_radio)
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
inputs=cyclomatic_complexity_checkbox,
outputs=cyclomatic_complexity_radio)
with gr.Tabs() as inner_tabs:
with gr.TabItem("Ranking Table"):
dataframe_output = gr.Dataframe(elem_id="dataframe")
css_output = gr.HTML()
confirm_button = gr.Button("Confirm ")
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
line_counts_radio, cyclomatic_complexity_radio,problem_type_checkbox],
outputs=dataframe_output)
with gr.TabItem("Line chart"):
select_radio = gr.Radio(choices=[],label="Select One Perpective")
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
problem_type_checkbox]
for checkbox in checkboxes:
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
select_radio.change(fn=plot_csv, inputs=[select_radio, num_parts_dropdown],
outputs=gr.Plot(label="Line Plot "))
with gr.TabItem("Upload Inference File"):
gr.Markdown("Upload a JSON file")
with gr.Row():
with gr.Column():
string_input = gr.Textbox(label="Enter the Model Name")
number_input = gr.Number(label="Select the Number of Samples")
dataset_choice = gr.Dropdown(label="Select Dataset", choices=["HumanEval", "MBPP"])
with gr.Column():
file_input = gr.File(label="Upload Generation Result in JSON file")
upload_button = gr.Button("Confirm and Upload")
json_output = gr.JSON(label="")
upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
outputs=json_output)
# 定义事件处理函数
def toggle_radio(checkbox, radio):
return gr.update(visible=checkbox)
css = """
#scale1 {
border: 1px solid rgba(0, 0, 0, 0.2);
padding: 10px;
border-radius: 8px;
background-color: #f9f9f9;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
}
"""
gr.HTML(f"<style>{css}</style>")
# 初始化数据表格
# initial_df = show_data(False, False, False, False, False, False, False)
# initial_css = generate_css(False, False, False, False, True, False, False)
# dataframe_output.value = initial_df
# css_output.value = f"<style>{initial_css}</style>"
# 启动界面
iface.launch()