Spaces:
Running
Running
File size: 17,343 Bytes
32b50e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_checkbox):
# 根据用户选择的参数构建文件路径
num_parts = num_parts_dropdown
# token_counts_split = token_counts_radio
# line_counts_split = line_counts_radio
# cyclomatic_complexity_split = cyclomatic_complexity_radio
# 读取数据
dataframes = []
if dataset_radio == "HumanEval":
if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/token_counts_EI.csv")
dataframes.append(token_counts_df)
if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/line_counts_EI.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
dataframes.append(CC_df)
if token_counts_radio=="Equal Interval Partitioning":
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/CC_EI.csv")
dataframes.append(CC_df)
#以下改为直接从一个划分文件中读取即可
if problem_type_checkbox:
problem_type_df = pd.read_csv("/home/user/app/dividing_into_different_subsets/cata_result.csv")
dataframes.append(problem_type_df)
if dataset_radio == "MBPP":
if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/token_counts_QS.csv")
dataframes.append(token_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/token_counts_EI.csv")
dataframes.append(token_counts_df)
if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/line_counts_QS.csv")
dataframes.append(line_counts_df)
if token_counts_radio=="Equal Interval Partitioning":
line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/line_counts_EI.csv")
dataframes.append(line_counts_df)
if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/CC_QS.csv")
dataframes.append(CC_df)
if token_counts_radio=="Equal Interval Partitioning":
CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/CC_EI.csv")
dataframes.append(CC_df)
#以下改为直接从一个划分文件中读取即可
if problem_type_checkbox:
problem_type_df = pd.read_csv("/home/user/app/dividing_into_different_subsets_mbpp/cata_result.csv")
dataframes.append(problem_type_df)
# 如果所有三个radio都有value,将三个文件中的所有行拼接
if len(dataframes) > 0:
combined_df = dataframes[0]
for df in dataframes[1:]:
combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')] # 去除重复的列
return combined_df
else:
return pd.DataFrame()
def execute_specified_python_files(directory_list, file_list):
for directory in directory_list:
for py_file in file_list:
file_path = os.path.join(directory, py_file)
if os.path.isfile(file_path) and py_file.endswith('.py'):
print(f"Executing {file_path}...")
try:
# 使用subprocess执行Python文件
subprocess.run(['python', file_path], check=True)
print(f"{file_path} executed successfully.")
except subprocess.CalledProcessError as e:
print(f"Error executing {file_path}: {e}")
else:
print(f"File {file_path} does not exist or is not a Python file.")
# 定义一个函数来生成 CSS 样式
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
css = """
#dataframe th {
background-color: #f2f2f2
}
"""
colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
categories = [line_counts, token_counts, cyclomatic_complexity]
category_index = 0
column_index = 1
for category in categories:
if category:
if show_high:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_medium:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
if show_low:
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
column_index += 1
category_index += 1
# 为 Problem Type 相关的三个子列设置固定颜色
if problem_type:
problem_type_color = "#d4f0fc" # 你可以选择任何你喜欢的颜色
css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"
# 隐藏 "data" 标识
css += """
.gradio-container .dataframe-container::before {
content: none !important;
}
"""
return css
def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
options = []
if token_counts:
options.append("The Number of Tokens in Problem Descriptions")
if line_counts:
options.append("The Number of Lines in Problem Descriptions")
if cyclomatic_complexity:
options.append("The Complexity of Reference Code")
if problem_type:
options.append("Problem Type")
return gr.update(choices=options)
def plot_csv(dataset_radio,radio,num):
print(dataset_radio,radio)
if dataset_radio=="HumanEval":
if radio=="The Number of Tokens in Problem Descriptions":
radio_choice="token_counts"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Number of Lines in Problem Descriptions":
radio_choice="line_counts"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Complexity of Reference Code":
radio_choice="CC"
file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'/home/user/app/dividing_into_different_subsets/cata_result.csv'
print("test!")
elif dataset_radio=="MBPP":
if radio=="The Number of Tokens in Problem Descriptions":
radio_choice="token_counts"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Number of Lines in Problem Descriptions":
radio_choice="line_counts"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
elif radio=="The Complexity of Reference Code":
radio_choice="CC"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
elif radio=="Problem Type":
radio_choice="problem_type"
file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/cata_result.csv'
print("test!")
# file_path="E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/3/QS/CC_QS.csv"
df = pd.read_csv(file_path)
# 将第一列作为索引
df.set_index('Model', inplace=True)
# 转置数据框,使得模型作为列,横轴作为行
df_transposed = df.T
# 使用plotly绘制折线图
fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
title='Model Evaluation Results',
labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
color_discrete_sequence=px.colors.qualitative.Plotly)
# 设置悬停效果
fig.update_traces(hovertemplate='%{y}')
return fig
def toggle_radio(checkbox, radio):
return gr.update(visible=checkbox)
def toggle_line_counts_visibility(dataset):
if dataset == "MBPP":
return gr.update(visible=False)
else:
return gr.update(visible=True)
# 创建 Gradio 界面
import gradio as gr
with gr.Blocks() as iface:
gr.HTML("""
<style>
# body {
# max-width: 50%; /* 设置最大宽度为50% */
# margin: 0 auto; /* 将内容居中 */
# }
.title {
text-align: center;
font-size: 3em;
font-weight: bold;
margin-bottom: 0.5em;
}
.subtitle {
text-align: center;
font-size: 2em;
margin-bottom: 1em;
}
</style>
""")
with gr.Tabs() as tabs:
with gr.TabItem("Evaluation Result"):
with gr.Row():
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")
with gr.Row():
custom_css = """
<style>
.markdown-class {
font-family: 'Helvetica', sans-serif;
font-size: 20px;
font-weight: bold;
color: #333;
}
</style>
"""
with gr.Column():
gr.Markdown(
f"{custom_css}<div class='markdown-class'> Choose Division Perspective </div>")
token_counts_checkbox = gr.Checkbox(label="I-The Number of Tokens in Problem Descriptions")
line_counts_checkbox = gr.Checkbox(label="II-The Number of Lines in Problem Descriptions")
dataset_radio.change(fn=toggle_line_counts_visibility, inputs=dataset_radio,
outputs=line_counts_checkbox)
cyclomatic_complexity_checkbox = gr.Checkbox(label="III-The Complexity of Reference Code")
problem_type_checkbox = gr.Checkbox(label="IV-Problem Types ")
css_code = """
.dropdown-container {
display: none;
}
"""
with gr.Column():
# gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
num_parts_dropdown = gr.Dropdown(choices=[0,3, 4, 5, 6, 7, 8], label="Choose the Number of Subsets",value="")
with gr.Row():
with gr.Column():
token_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"],
label="Choose the Division Method for Perspective-I",
visible=False)
with gr.Column():
line_counts_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"],
label="Choose the Division Method for Perspective-II",
visible=False)
with gr.Column():
cyclomatic_complexity_radio = gr.Radio(
["Equal Frequency Partitioning", "Equal Interval Partitioning"],
label="Choose the Division Method for Perspective-III",
visible=False)
token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
inputs=token_counts_checkbox, outputs=token_counts_radio)
line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
inputs=line_counts_checkbox, outputs=line_counts_radio)
cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
inputs=cyclomatic_complexity_checkbox,
outputs=cyclomatic_complexity_radio)
with gr.Tabs() as inner_tabs:
with gr.TabItem("Ranking Table"):
dataframe_output = gr.Dataframe(elem_id="dataframe")
css_output = gr.HTML()
confirm_button = gr.Button("Confirm ")
confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
line_counts_radio, cyclomatic_complexity_radio,
problem_type_checkbox],
outputs=dataframe_output)
with gr.TabItem("Line chart"):
select_radio = gr.Radio(choices=[], label="Select One Perpective")
checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
problem_type_checkbox]
for checkbox in checkboxes:
checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
select_radio.change(fn=plot_csv, inputs=[dataset_radio, select_radio, num_parts_dropdown],
outputs=gr.Plot(label="Line Plot "))
# with gr.TabItem("Upload Inference File"):
# gr.Markdown("Upload a JSON file")
# with gr.Row():
# with gr.Column():
# string_input = gr.Textbox(label="Enter the Model Name")
# number_input = gr.Number(label="Select the Number of Samples")
# dataset_choice = gr.Dropdown(label="Select Dataset", choices=["HumanEval", "MBPP"])
# with gr.Column():
# file_input = gr.File(label="Upload Generation Result in JSON file")
# upload_button = gr.Button("Confirm and Upload")
# json_output = gr.JSON(label="")
# upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
# outputs=json_output)
css = """
#scale1 {
border: 1px solid rgba(0, 0, 0, 0.2);
padding: 10px;
border-radius: 8px;
background-color: #f9f9f9;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
}
"""
gr.HTML(f"<style>{css}</style>")
# 初始化数据表格
# initial_df = show_data(False, False, False, False, False, False, False)
# initial_css = generate_css(False, False, False, False, True, False, False)
# dataframe_output.value = initial_df
# css_output.value = f"<style>{initial_css}</style>"
# 启动界面
iface.launch() |