File size: 17,343 Bytes
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import gradio as gr
import pandas as pd
import requests
import os
import shutil
import json
import pandas as pd
import subprocess
import plotly.express as px
def on_confirm(dataset_radio, num_parts_dropdown, token_counts_radio, line_counts_radio, cyclomatic_complexity_radio, problem_type_checkbox):
    # 根据用户选择的参数构建文件路径
    num_parts = num_parts_dropdown
    # token_counts_split = token_counts_radio
    # line_counts_split = line_counts_radio
    # cyclomatic_complexity_split = cyclomatic_complexity_radio


    # 读取数据
    dataframes = []
    if dataset_radio == "HumanEval":
        if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
            token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/token_counts_QS.csv")
            dataframes.append(token_counts_df)
        if token_counts_radio=="Equal Interval Partitioning":
            token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/token_counts_EI.csv")
            dataframes.append(token_counts_df)
        if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
            line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/line_counts_QS.csv")
            dataframes.append(line_counts_df)
        if token_counts_radio=="Equal Interval Partitioning":
            line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/line_counts_EI.csv")
            dataframes.append(line_counts_df)
        if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
            CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/QS/CC_QS.csv")
            dataframes.append(CC_df)
        if token_counts_radio=="Equal Interval Partitioning":
            CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets/{num_parts}/EI/CC_EI.csv")
            dataframes.append(CC_df)



    #以下改为直接从一个划分文件中读取即可
        if problem_type_checkbox:
            problem_type_df = pd.read_csv("/home/user/app/dividing_into_different_subsets/cata_result.csv")
            dataframes.append(problem_type_df)
    if dataset_radio == "MBPP":
        if token_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
            token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/token_counts_QS.csv")
            dataframes.append(token_counts_df)
        if token_counts_radio=="Equal Interval Partitioning":
            token_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/token_counts_EI.csv")
            dataframes.append(token_counts_df)
        if line_counts_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
            line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/line_counts_QS.csv")
            dataframes.append(line_counts_df)
        if token_counts_radio=="Equal Interval Partitioning":
            line_counts_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/line_counts_EI.csv")
            dataframes.append(line_counts_df)
        if cyclomatic_complexity_radio=="Equal Frequency Partitioning":#等频划分,每个子集数据点的数量基本一致
            CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/QS/CC_QS.csv")
            dataframes.append(CC_df)
        if token_counts_radio=="Equal Interval Partitioning":
            CC_df = pd.read_csv(f"/home/user/app/dividing_into_different_subsets_mbpp/{num_parts}/EI/CC_EI.csv")
            dataframes.append(CC_df)



    #以下改为直接从一个划分文件中读取即可
        if problem_type_checkbox:
            problem_type_df = pd.read_csv("/home/user/app/dividing_into_different_subsets_mbpp/cata_result.csv")
            dataframes.append(problem_type_df)

    # 如果所有三个radio都有value,将三个文件中的所有行拼接
    if len(dataframes) > 0:
        combined_df = dataframes[0]
        for df in dataframes[1:]:
            combined_df = pd.merge(combined_df, df, left_index=True, right_index=True, suffixes=('', '_y'))
            combined_df = combined_df.loc[:, ~combined_df.columns.str.endswith('_y')]  # 去除重复的列
        return combined_df
    else:
        return pd.DataFrame()




def execute_specified_python_files(directory_list, file_list):
    for directory in directory_list:
        for py_file in file_list:
            file_path = os.path.join(directory, py_file)
            if os.path.isfile(file_path) and py_file.endswith('.py'):
                print(f"Executing {file_path}...")
                try:
                    # 使用subprocess执行Python文件
                    subprocess.run(['python', file_path], check=True)
                    print(f"{file_path} executed successfully.")
                except subprocess.CalledProcessError as e:
                    print(f"Error executing {file_path}: {e}")
            else:
                print(f"File {file_path} does not exist or is not a Python file.")
# 定义一个函数来生成 CSS 样式
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
    css = """
    #dataframe th {
        background-color: #f2f2f2
        
    }
    """
    colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
    categories = [line_counts, token_counts, cyclomatic_complexity]
    category_index = 0
    column_index = 1

    for category in categories:
        if category:
            if show_high:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
            if show_medium:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
            if show_low:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
        category_index += 1

    # 为 Problem Type 相关的三个子列设置固定颜色
    if problem_type:
        problem_type_color = "#d4f0fc"  # 你可以选择任何你喜欢的颜色
        css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
        css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
        css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"

    # 隐藏 "data" 标识
    css += """
    .gradio-container .dataframe-container::before {
        content: none !important;
    }
    """

    return css




def update_radio_options(token_counts, line_counts, cyclomatic_complexity, problem_type):
    options = []
    if token_counts:
        options.append("The Number of Tokens in Problem Descriptions")
    if line_counts:
        options.append("The Number of Lines in Problem Descriptions")
    if cyclomatic_complexity:
        options.append("The Complexity of Reference Code")
    if problem_type:
        options.append("Problem Type")

    return gr.update(choices=options)

def plot_csv(dataset_radio,radio,num):
    print(dataset_radio,radio)
    if dataset_radio=="HumanEval":
    
        if radio=="The Number of Tokens in Problem Descriptions":
            radio_choice="token_counts"
            file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
        elif radio=="The Number of Lines in Problem Descriptions":
            radio_choice="line_counts"
            file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
        elif radio=="The Complexity of Reference Code":
            radio_choice="CC"
            file_path = f'/home/user/app/dividing_into_different_subsets/{num}/QS/{radio_choice}_QS.csv'
        elif radio=="Problem Type":
            radio_choice="problem_type"
            file_path = f'/home/user/app/dividing_into_different_subsets/cata_result.csv'
        print("test!")
    elif dataset_radio=="MBPP":
        if radio=="The Number of Tokens in Problem Descriptions":
            radio_choice="token_counts"
            file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
        elif radio=="The Number of Lines in Problem Descriptions":
            radio_choice="line_counts"
            file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
        elif radio=="The Complexity of Reference Code":
            radio_choice="CC"
            file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/{num}/QS/{radio_choice}_QS.csv'
        elif radio=="Problem Type":
            radio_choice="problem_type"
            file_path = f'/home/user/app/dividing_into_different_subsets_mbpp/cata_result.csv'
        print("test!")

    # file_path="E:/python-testn/pythonProject3/hh_1/dividing_into_different_subsets/3/QS/CC_QS.csv"
    df = pd.read_csv(file_path)
    # 将第一列作为索引
    df.set_index('Model', inplace=True)

    # 转置数据框,使得模型作为列,横轴作为行
    df_transposed = df.T

    # 使用plotly绘制折线图
    fig = px.line(df_transposed, x=df_transposed.index, y=df_transposed.columns,
                  title='Model Evaluation Results',
                  labels={'value': 'Evaluation Score', 'index': 'Evaluation Metric'},
                  color_discrete_sequence=px.colors.qualitative.Plotly)

    # 设置悬停效果
    fig.update_traces(hovertemplate='%{y}')

    return fig

def toggle_radio(checkbox, radio):
    return gr.update(visible=checkbox)

def toggle_line_counts_visibility(dataset):
    if dataset == "MBPP":
        return gr.update(visible=False)
    else:
        return gr.update(visible=True)

    # 创建 Gradio 界面
import gradio as gr

with gr.Blocks() as iface:
    gr.HTML("""
               <style>
                   # body {
                   #     max-width: 50%; /* 设置最大宽度为50% */
                   #     margin: 0 auto; /* 将内容居中 */
                   # }
                   .title {
                       text-align: center;
                       font-size: 3em;
                       font-weight: bold;
                       margin-bottom: 0.5em;
                   }
                   .subtitle {
                       text-align: center;
                       font-size: 2em;
                       margin-bottom: 1em;
                   }
               </style>

           """)

    with gr.Tabs() as tabs:
        with gr.TabItem("Evaluation Result"):
            with gr.Row():
                with gr.Column(scale=2):
                    with gr.Row():
                        with gr.Column():
                            dataset_radio = gr.Radio(["HumanEval", "MBPP"], label="Select Dataset ")


            with gr.Row():
                custom_css = """  
                    <style>  
                        .markdown-class {  
                            font-family: 'Helvetica', sans-serif;
                            font-size: 20px; 
                            font-weight: bold;  
                            color: #333; 
                        }  
                    </style>  
                    """

                with gr.Column():
                    gr.Markdown(
                        f"{custom_css}<div class='markdown-class'> Choose Division Perspective </div>")

                    token_counts_checkbox = gr.Checkbox(label="I-The Number of Tokens in Problem Descriptions")
                    line_counts_checkbox = gr.Checkbox(label="II-The Number of Lines in Problem Descriptions")
                    dataset_radio.change(fn=toggle_line_counts_visibility, inputs=dataset_radio,
                                         outputs=line_counts_checkbox)
                    cyclomatic_complexity_checkbox = gr.Checkbox(label="III-The Complexity of Reference Code")
                    problem_type_checkbox = gr.Checkbox(label="IV-Problem Types ")
                css_code = """  
                    .dropdown-container {  
                        display: none;  
                    }  
                """

                with gr.Column():
                    # gr.Markdown("<div class='markdown-class'>Choose Subsets </div>")
                    num_parts_dropdown = gr.Dropdown(choices=[0,3, 4, 5, 6, 7, 8], label="Choose the Number of Subsets",value="")

            with gr.Row():
                with gr.Column():
                    token_counts_radio = gr.Radio(
                        ["Equal Frequency Partitioning", "Equal Interval Partitioning"],
                        label="Choose the Division Method for Perspective-I",
                        visible=False)
                with gr.Column():
                    line_counts_radio = gr.Radio(
                        ["Equal Frequency Partitioning", "Equal Interval Partitioning"],
                        label="Choose the Division Method for Perspective-II",
                        visible=False)
                with gr.Column():
                    cyclomatic_complexity_radio = gr.Radio(
                        ["Equal Frequency Partitioning", "Equal Interval Partitioning"],
                        label="Choose the Division Method for Perspective-III",
                        visible=False)

            token_counts_checkbox.change(fn=lambda x: toggle_radio(x, token_counts_radio),
                                         inputs=token_counts_checkbox, outputs=token_counts_radio)
            line_counts_checkbox.change(fn=lambda x: toggle_radio(x, line_counts_radio),
                                        inputs=line_counts_checkbox, outputs=line_counts_radio)
            cyclomatic_complexity_checkbox.change(fn=lambda x: toggle_radio(x, cyclomatic_complexity_radio),
                                                  inputs=cyclomatic_complexity_checkbox,
                                                  outputs=cyclomatic_complexity_radio)

            with gr.Tabs() as inner_tabs:
                with gr.TabItem("Ranking Table"):
                    dataframe_output = gr.Dataframe(elem_id="dataframe")
                    css_output = gr.HTML()
                    confirm_button = gr.Button("Confirm ")
                    confirm_button.click(fn=on_confirm, inputs=[dataset_radio, num_parts_dropdown, token_counts_radio,
                                                                line_counts_radio, cyclomatic_complexity_radio,
                                                                problem_type_checkbox],
                                         outputs=dataframe_output)

                with gr.TabItem("Line chart"):
                    select_radio = gr.Radio(choices=[], label="Select One Perpective")
                    checkboxes = [token_counts_checkbox, line_counts_checkbox, cyclomatic_complexity_checkbox,
                                  problem_type_checkbox]
                    for checkbox in checkboxes:
                        checkbox.change(fn=update_radio_options, inputs=checkboxes, outputs=select_radio)
                    select_radio.change(fn=plot_csv, inputs=[dataset_radio, select_radio, num_parts_dropdown],
                                        outputs=gr.Plot(label="Line Plot "))

        # with gr.TabItem("Upload Inference File"):
        #     gr.Markdown("Upload a JSON file")
        #     with gr.Row():
        #         with gr.Column():
        #             string_input = gr.Textbox(label="Enter the Model Name")
        #             number_input = gr.Number(label="Select the Number of Samples")
        #             dataset_choice = gr.Dropdown(label="Select Dataset", choices=["HumanEval", "MBPP"])
        #         with gr.Column():
        #             file_input = gr.File(label="Upload Generation Result in JSON file")
        #             upload_button = gr.Button("Confirm and Upload")

        #     json_output = gr.JSON(label="")

        #     upload_button.click(fn=generate_file, inputs=[file_input, string_input, number_input, dataset_choice],
        #                         outputs=json_output)

    css = """  
        #scale1 {  
    border: 1px solid rgba(0, 0, 0, 0.2); 
    padding: 10px;  
    border-radius: 8px;
    background-color: #f9f9f9; 
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); 
}  
        }  
        """
    gr.HTML(f"<style>{css}</style>")

    # 初始化数据表格
    # initial_df = show_data(False, False, False, False, False, False, False)
    # initial_css = generate_css(False, False, False, False, True, False, False)
    # dataframe_output.value = initial_df
    # css_output.value = f"<style>{initial_css}</style>"

# 启动界面
iface.launch()