File size: 17,755 Bytes
f887c3b
 
 
b8a0ce6
f887c3b
b8a0ce6
 
1537fc2
f887c3b
b8a0ce6
1537fc2
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58538e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537fc2
 
b58538e
1537fc2
b58538e
 
 
 
 
 
 
 
 
 
 
 
f887c3b
b8a0ce6
 
f887c3b
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
1537fc2
b8a0ce6
 
 
 
 
 
 
f887c3b
b8a0ce6
 
 
 
 
f887c3b
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f887c3b
 
 
 
1537fc2
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f887c3b
 
 
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537fc2
b8a0ce6
b58538e
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58538e
b8a0ce6
 
f887c3b
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b58538e
b8a0ce6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1537fc2
f887c3b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import gradio as gr
import pandas as pd
import pandas as pd
import json
import plotly.express as px

def on_confirm(dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio):
    # 根据用户选择的参数构建文件路径
    num_parts = num_parts_dropdown
    
    if dataset_radio == "HumanEval":
        base_path = "./dividing_into_different_subsets"
    else:  # MBPP
        base_path = "./dividing_into_different_subsets_mbpp"
    
    method = "QS" if division_method_radio == "Equal Frequency Partitioning" else "EI"
    
    # 根据perspective选择读取对应的文件
    if "Tokens" in perspective_radio:
        df = pd.read_csv(f"{base_path}/{num_parts}/{method}/token_counts_{method}.csv")
    elif "Lines" in perspective_radio:
        df = pd.read_csv(f"{base_path}/{num_parts}/{method}/line_counts_{method}.csv")
    elif "Complexity" in perspective_radio:
        df = pd.read_csv(f"{base_path}/{num_parts}/{method}/CC_{method}.csv")
    elif "Problem Types" in perspective_radio:
        df = pd.read_csv(f"{base_path}/cata_result.csv")
    
    # 加载分析报告
    analysis_result,_ = load_analysis_report(dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio)
    # AI分析列
    df["Analysis"] = df["Model"].map(lambda m: analysis_result.get(m, "No analysis provided."))
    return df

# 生成 CSS 样式
def generate_css(line_counts, token_counts, cyclomatic_complexity, problem_type, show_high, show_medium, show_low):
    css = """
    #dataframe th {
        background-color: #f2f2f2
        
    }
    """
    colors = ["#e6f7ff", "#ffeecc", "#e6ffe6", "#ffe6e6"]
    categories = [line_counts, token_counts, cyclomatic_complexity]
    category_index = 0
    column_index = 1

    for category in categories:
        if category:
            if show_high:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
            if show_medium:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
            if show_low:
                css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {colors[category_index]}; }}\n"
                column_index += 1
        category_index += 1

    # 为 Problem Type 相关的三个子列设置固定颜色
    if problem_type:
        problem_type_color = "#d4f0fc"  # 你可以选择任何你喜欢的颜色
        css += f"#dataframe td:nth-child({column_index + 1}) {{ background-color: {problem_type_color}; }}\n"
        css += f"#dataframe td:nth-child({column_index + 2}) {{ background-color: {problem_type_color}; }}\n"
        css += f"#dataframe td:nth-child({column_index + 3}) {{ background-color: {problem_type_color}; }}\n"

    # 隐藏 "data" 标识
    css += """
    .gradio-container .dataframe-container::before {
        content: none !important;
    }
    """

    return css

# AI分析
def load_analysis_report(dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio):

    num_parts = num_parts_dropdown
    method = "QS" if division_method_radio == "Equal Frequency Partitioning" else "EI"

    # 根据perspective确定文件路径
    if "Tokens" in perspective_radio:
        perspective = "token_counts"
    elif "Lines" in perspective_radio:
        perspective = "line_counts"
    elif "Complexity" in perspective_radio:
        perspective = "CC"
    else:
        perspective = "problem_type"

    base_path = "./llm_insight"
    if perspective == "problem_type":
        report_file = f"{base_path}/{dataset_radio}/{perspective}_report.json"
        recommendation_file = f"{base_path}/{dataset_radio}/{perspective}_recommendation.json"
    else:
        report_file = f"{base_path}/{dataset_radio}/{num_parts}/{method}/{perspective}_report.json"
        recommendation_file = f"{base_path}/{dataset_radio}/{num_parts}/{method}/{perspective}_recommendation.json"

    try:
        with open(report_file, 'r', encoding='utf-8') as f:
            analysis_result = json.load(f)
    except Exception as e:
        analysis_result = f"[Error] error load analysis report: {e}"

    try:
        with open(recommendation_file, 'r', encoding='utf-8') as f:
            recommendation_result = json.load(f)
    except Exception as e:
        recommendation_result = f"[Error] error load model recommendation: {e}"

    return (analysis_result,recommendation_result)

# 可视化
def plot_visualization(dataset_radio, perspective_radio, num_parts, plot_type):
    if dataset_radio == "HumanEval":
        base_path = "./dividing_into_different_subsets"
    else:  # MBPP
        base_path = "./dividing_into_different_subsets_mbpp"

    if "Tokens" in perspective_radio:
        file_path = f'{base_path}/{num_parts}/QS/token_counts_QS.csv'
    elif "Lines" in perspective_radio:
        file_path = f'{base_path}/{num_parts}/QS/line_counts_QS.csv'
    elif "Complexity" in perspective_radio:
        file_path = f'{base_path}/{num_parts}/QS/CC_QS.csv'
    else:  # Problem Types
        file_path = f'{base_path}/cata_result.csv'

    df = pd.read_csv(file_path)
    df.set_index('Model', inplace=True)
    df_transposed = df.T

    if plot_type == "Line Chart":
        fig = px.line(df_transposed, 
                     x=df_transposed.index, 
                     y=df_transposed.columns,
                     title='Model Performance Across Different Subsets',
                     labels={'value': 'Evaluation Score', 'index': 'Subsets'},
                     color_discrete_sequence=px.colors.qualitative.Plotly)
        fig.update_traces(hovertemplate='%{y}')
    elif plot_type == "Radar Chart":  # Radar Chart
        # 重新组织数据为雷达图所需格式
        radar_data = []
        for model in df.index:
            for subset, score in df.loc[model].items():
                radar_data.append({
                    'Model': model,
                    'Subset': subset,
                    'Score': score
                })
        
        radar_df = pd.DataFrame(radar_data)
        
        colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
        
        # 创建雷达图
        fig = px.line_polar(radar_df, 
                           r='Score',
                           theta='Subset',
                           color='Model',
                           line_close=True,
                           color_discrete_sequence=colors,
                           title='Model Performance Radar Chart')
        
        # 自定义每个模型的线条样式
        for i, trace in enumerate(fig.data):
            trace.update(
                fill=None,  # 移除填充
                line=dict(
                    width=2,
                    dash='solid' if i % 2 == 0 else 'dash',  # 交替使用实线和虚线
                )
            )
        
        # 优化雷达图的显示
        fig.update_layout(
            polar=dict(
                radialaxis=dict(
                    visible=True,
                    range=[0, 100],
                    showline=True,
                    linewidth=1,
                    gridcolor='lightgrey'
                ),
                angularaxis=dict(
                    showline=True,
                    linewidth=1,
                    gridcolor='lightgrey'
                )
            ),
            showlegend=True,
            legend=dict(
                yanchor="middle",  # 垂直居中
                y=0.5,
                xanchor="left",
                x=1.2,  # 将图例移到雷达图右侧
                bgcolor="rgba(255, 255, 255, 0.8)",  # 半透明白色背景
                bordercolor="lightgrey",  # 添加边框
                borderwidth=1
            ),
            margin=dict(r=150),  # 增加右侧边距,为图例留出空间
            paper_bgcolor='white'
        )
    else:  # Heatmap
        # 创建热力图
        fig = px.imshow(df_transposed,
                       labels=dict(x="Model", y="Subset", color="Score"),
                       color_continuous_scale="RdYlBu_r",  # 使用科研风格配色:红-黄-蓝
                       aspect="auto",  # 自动调整宽高比
                       title="Model Performance Heatmap")
        
        # 优化热力图显示
        fig.update_layout(
            title=dict(
                text='Model Performance Distribution Across Subsets',
                x=0.5,
                y=0.95,
                xanchor='center',
                yanchor='top',
                font=dict(size=14)
            ),
            xaxis=dict(
                title="Model",
                tickangle=45,  # 斜着显示模型名称
                tickfont=dict(size=10),
                side="bottom"
            ),
            yaxis=dict(
                title="Subset",
                tickfont=dict(size=10)
            ),
            coloraxis=dict(
                colorbar=dict(
                    title="Score",
                    titleside="right",
                    tickfont=dict(size=10),
                    titlefont=dict(size=12),
                    len=0.9,  # 色条长度
                )
            ),
            margin=dict(t=80, r=100, b=80, l=80),  # 调整边距
            paper_bgcolor='white',
            plot_bgcolor='white'
        )

        # 添加具体数值标注
        annotations = []
        for i in range(len(df_transposed.index)):
            for j in range(len(df_transposed.columns)):
                annotations.append(
                    dict(
                        x=j,
                        y=i,
                        text=f"{df_transposed.iloc[i, j]:.1f}",
                        showarrow=False,
                        font=dict(size=9, color='black')
                    )
                )
        fig.update_layout(annotations=annotations)

    return fig

# 旭日图
def plot_recommendation_sunburst(dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio):
    import plotly.graph_objects as go
    _, recommendation_result = load_analysis_report(dataset_radio, num_parts_dropdown, perspective_radio, division_method_radio)
    labels = ['Model Recommendation']  # 根节点
    parents = ['']
    values = []
    customdata = ['Choose your preference model']

    # 统计每个场景下模型数量
    scenario_model_count = {}
    total_model_count = 0

    for scenario, model_list in recommendation_result.items():
        # 处理模型
        model_items = []
        if isinstance(model_list, dict):
            model_items = model_list.items()
        elif isinstance(model_list, list):
            for d in model_list:
                if isinstance(d, dict):
                    for k, v in d.items():
                        model_items.append((k, v))

        scenario_model_count[scenario] = len(model_items)
        total_model_count += len(model_items)

    # 根节点 value
    values.append(total_model_count)

    # 再次遍历,填充 labels/parents/values/customdata
    for scenario, model_list in recommendation_result.items():
        scenario_words = scenario.split()
        short_label = " ".join(scenario_words[:3]) + "..." if len(scenario_words) > 3 else scenario
        labels.append(short_label)
        parents.append('Model Recommendation')
        values.append(scenario_model_count[scenario])
        customdata.append(scenario)

        # 处理模型
        model_items = []
        if isinstance(model_list, dict):
            model_items = model_list.items()
        elif isinstance(model_list, list):
            for d in model_list:
                if isinstance(d, dict):
                    for k, v in d.items():
                        model_items.append((k, v))

        for model, reason in model_items:
            labels.append(model)
            parents.append(short_label)
            values.append(1)
            customdata.append(reason)

    fig = go.Figure(go.Sunburst(
        labels=labels,
        parents=parents,
        values=values,
        branchvalues="total",
        hovertemplate='%{customdata}<extra></extra>',
        customdata=customdata
    ))
    fig.update_layout(margin=dict(t=10, l=10, r=10, b=10), height=500)
    return fig

### Gradio代码部分 ### 

# 自定义 CSS 样式
custom_css = """
<style>
    body {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
        background-color: #f9f9f9;
    }
    .gr-label {
        font-size: 15px;
    }
    .gr-button-primary {
        background-color: #4CAF50;
        color: white;
        border-radius: 8px;
    }
    .gr-tabs > .tab-nav {
        background-color: #e0e0e0;
        border-bottom: 2px solid #ccc;
    }
    .gr-tabs > .tab-nav button.selected {
        background-color: #ffffff !important;
        border-bottom: 2px solid #4CAF50;
    }
    .gr-panel {
        padding: 20px;
        border-radius: 10px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        background-color: #fff;
    }
    .markdown-title {
        font-size: 1.5em;
        font-weight: bold;
        margin-bottom: 10px;
    }
    .analysis-box {
        background-color: #f1f8ff;
        padding: 20px;
        border-left: 5px solid #4CAF50;
        border-radius: 6px;
        margin-top: 10px;
    }
    .recommendation-box {
        background-color: #fff3cd;
        padding: 20px;
        border-left: 5px solid #ff9800;
        border-radius: 6px;
        margin-top: 10px;
    }
</style>
"""

# 构建界面
with gr.Blocks(css=custom_css) as iface:
    gr.HTML("""
    <div style='text-align:center; padding:15px;'>
        <h1>Multi-view Code LLM Leaderboard</h1>
        <p>Multi-view Leaderboard: Evaluating Large  Language Models From Multiple Views</p>
    </div>
    """)

    with gr.Row():
        # 选择配置
        with gr.Column(scale=1):
            dataset_radio = gr.Radio(
                ["HumanEval", "MBPP"],
                label="Select a dataset",
                value="HumanEval"
            )
            num_parts_slider = gr.Slider(
                minimum=3,
                maximum=8,
                step=1,
                label="Choose the Number of Subsets",
                value=3
            )
            
            # 将多个checkbox改为一个radio
            perspective_radio = gr.Radio(
                ["I - Num of Tokens in Problem Desc",
                 "II - Num of Lines in Problem Desc",
                 "III - Complexity of Reference Code",
                 "IV - Problem Types"],
                label="Choose Perspective",
                value="I - Num of Tokens in Problem Desc"
            )

            # 统一的division method radio
            division_method_radio = gr.Radio(
                ["Equal Frequency Partitioning", "Equal Interval Partitioning"],
                label="Choose the Division Method",
                visible=True
            )

            confirm_btn = gr.Button("Confirm", variant="primary")

        # 核心展示
        with gr.Column(scale=2):
            with gr.Tabs():
                # 表格
                with gr.TabItem("Ranking Table"):
                    data_table = gr.Dataframe(headers=["Model", "Score","Analysis"],interactive=True)
                # 可视化
                with gr.TabItem("Visualization"):
                    plot_type = gr.Radio(
                        choices=["Line Chart", "Radar Chart","Heatmap"],
                        label="Select Plot Type",
                        value="Line Chart"
                    )
                    chart = gr.Plot()
                # AI分析
                with gr.TabItem("Model selection suggestions"):
                    with gr.Column():
                        gr.Markdown("<h2 class='markdown-title'>🎯 Model Recommendation</h2>")
                        recommendation_plot = gr.Plot()
                        scenario_legend = gr.Markdown(value="")  # 新增图例
    
    def update_perspective_options(dataset):
        if dataset == "MBPP":
            return gr.update(choices=[
                "I - Num of Tokens in Problem Desc",
                "III - Complexity of Reference Code",
                "IV - Problem Types"
            ])
        else:
            return gr.update(choices=[
                "I - Num of Tokens in Problem Desc",
                "II - Num of Lines in Problem Desc",
                "III - Complexity of Reference Code",
                "IV - Problem Types"
            ])

    dataset_radio.change(
        fn=update_perspective_options,
        inputs=dataset_radio,
        outputs=perspective_radio
    )


    # 绑定事件
    confirm_btn.click(
        fn=on_confirm,
        inputs=[dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
        outputs=data_table
    ).then(
        fn=load_analysis_report,
        inputs=[dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
        outputs=[gr.State()]
    ).then(
        fn=plot_visualization,
        inputs=[dataset_radio, perspective_radio, num_parts_slider, plot_type],
        outputs=chart
    ).then(
        fn=plot_recommendation_sunburst,
        inputs=[dataset_radio, num_parts_slider, perspective_radio, division_method_radio],
        outputs=[recommendation_plot]  # 注意这里是列表
    )

    plot_type.change(
        fn=plot_visualization,
        inputs=[dataset_radio, perspective_radio, num_parts_slider, plot_type],
        outputs=chart
    )
# 启动界面
iface.launch()