Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ transform = transforms.Compose([
|
|
29 |
])
|
30 |
|
31 |
def classify_crop(crop_img):
|
32 |
-
"""
|
33 |
image = transform(crop_img).unsqueeze(0).to(device)
|
34 |
with torch.no_grad():
|
35 |
output = resnet(image)
|
@@ -37,23 +37,19 @@ def classify_crop(crop_img):
|
|
37 |
return class_labels[predicted.item()]
|
38 |
|
39 |
def detect_and_classify(input_image):
|
40 |
-
"""
|
41 |
-
# Convert Gradio Image to OpenCV format
|
42 |
image = np.array(input_image)
|
43 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
44 |
-
|
45 |
-
# YOLO Detection
|
46 |
results = yolo_model(image)[0]
|
47 |
boxes = results.boxes.xyxy.cpu().numpy()
|
48 |
-
|
49 |
-
# Process each detection
|
50 |
for box in boxes:
|
51 |
x1, y1, x2, y2 = map(int, box[:4])
|
52 |
crop = image[y1:y2, x1:x2]
|
53 |
crop_pil = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
|
54 |
predicted_label = classify_crop(crop_pil)
|
55 |
|
56 |
-
# Draw bounding box and label
|
57 |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
58 |
cv2.putText(image,
|
59 |
predicted_label,
|
@@ -63,22 +59,22 @@ def detect_and_classify(input_image):
|
|
63 |
(36, 255, 12),
|
64 |
2)
|
65 |
|
66 |
-
# Convert back to RGB for Gradio
|
67 |
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
68 |
|
69 |
-
#
|
70 |
-
with gr.Blocks(title="
|
71 |
gr.Markdown("""
|
72 |
-
## 🍚
|
73 |
-
|
|
|
74 |
""")
|
75 |
|
76 |
with gr.Row():
|
77 |
with gr.Column():
|
78 |
-
image_input = gr.Image(type="pil", label="
|
79 |
-
submit_btn = gr.Button("
|
80 |
with gr.Column():
|
81 |
-
output_image = gr.Image(label="
|
82 |
|
83 |
submit_btn.click(
|
84 |
fn=detect_and_classify,
|
@@ -86,5 +82,5 @@ with gr.Blocks(title="Rice Classification") as demo:
|
|
86 |
outputs=output_image
|
87 |
)
|
88 |
|
89 |
-
#
|
90 |
-
demo.launch()
|
|
|
29 |
])
|
30 |
|
31 |
def classify_crop(crop_img):
|
32 |
+
"""ایک چاول کے دانے کو درجہ بند کریں"""
|
33 |
image = transform(crop_img).unsqueeze(0).to(device)
|
34 |
with torch.no_grad():
|
35 |
output = resnet(image)
|
|
|
37 |
return class_labels[predicted.item()]
|
38 |
|
39 |
def detect_and_classify(input_image):
|
40 |
+
"""تصویر پر کارروائی کریں اور ہر دانے کو شناخت کریں"""
|
|
|
41 |
image = np.array(input_image)
|
42 |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
43 |
+
|
|
|
44 |
results = yolo_model(image)[0]
|
45 |
boxes = results.boxes.xyxy.cpu().numpy()
|
46 |
+
|
|
|
47 |
for box in boxes:
|
48 |
x1, y1, x2, y2 = map(int, box[:4])
|
49 |
crop = image[y1:y2, x1:x2]
|
50 |
crop_pil = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
|
51 |
predicted_label = classify_crop(crop_pil)
|
52 |
|
|
|
53 |
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
54 |
cv2.putText(image,
|
55 |
predicted_label,
|
|
|
59 |
(36, 255, 12),
|
60 |
2)
|
61 |
|
|
|
62 |
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
63 |
|
64 |
+
# Gradio انٹرفیس بنائیں
|
65 |
+
with gr.Blocks(title="چاول کی اقسام کی درجہ بندی") as demo:
|
66 |
gr.Markdown("""
|
67 |
+
## 🍚 چاول کی اقسام کی شناخت کا نظام
|
68 |
+
ایک تصویر اپ لوڈ کریں جس میں چاول کے دانے ہوں۔
|
69 |
+
سسٹم ہر دانے کو شناخت اور درجہ بند کرے گا۔
|
70 |
""")
|
71 |
|
72 |
with gr.Row():
|
73 |
with gr.Column():
|
74 |
+
image_input = gr.Image(type="pil", label="چاول کی تصویر اپ لوڈ کریں")
|
75 |
+
submit_btn = gr.Button("تجزیہ شروع کریں", variant="primary")
|
76 |
with gr.Column():
|
77 |
+
output_image = gr.Image(label="نتائج", interactive=False)
|
78 |
|
79 |
submit_btn.click(
|
80 |
fn=detect_and_classify,
|
|
|
82 |
outputs=output_image
|
83 |
)
|
84 |
|
85 |
+
# ایپ لانچ کریں
|
86 |
+
demo.launch()
|