|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import inspect |
|
import os |
|
import re |
|
import warnings |
|
from dataclasses import dataclass |
|
from pathlib import Path |
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
from huggingface_hub import model_info, snapshot_download |
|
from packaging import version |
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
|
|
import diffusers |
|
|
|
from .. import __version__ |
|
from ..configuration_utils import ConfigMixin |
|
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT |
|
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME |
|
from ..utils import ( |
|
CONFIG_NAME, |
|
DEPRECATED_REVISION_ARGS, |
|
DIFFUSERS_CACHE, |
|
HF_HUB_OFFLINE, |
|
SAFETENSORS_WEIGHTS_NAME, |
|
WEIGHTS_NAME, |
|
BaseOutput, |
|
deprecate, |
|
get_class_from_dynamic_module, |
|
http_user_agent, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
is_safetensors_available, |
|
is_torch_version, |
|
is_transformers_available, |
|
logging, |
|
) |
|
|
|
|
|
if is_transformers_available(): |
|
import transformers |
|
from transformers import PreTrainedModel |
|
from transformers.utils import FLAX_WEIGHTS_NAME as TRANSFORMERS_FLAX_WEIGHTS_NAME |
|
from transformers.utils import SAFE_WEIGHTS_NAME as TRANSFORMERS_SAFE_WEIGHTS_NAME |
|
from transformers.utils import WEIGHTS_NAME as TRANSFORMERS_WEIGHTS_NAME |
|
|
|
from ..utils import FLAX_WEIGHTS_NAME, ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME |
|
|
|
|
|
if is_accelerate_available(): |
|
import accelerate |
|
|
|
|
|
INDEX_FILE = "diffusion_pytorch_model.bin" |
|
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py" |
|
DUMMY_MODULES_FOLDER = "diffusers.utils" |
|
TRANSFORMERS_DUMMY_MODULES_FOLDER = "transformers.utils" |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
LOADABLE_CLASSES = { |
|
"diffusers": { |
|
"ModelMixin": ["save_pretrained", "from_pretrained"], |
|
"SchedulerMixin": ["save_pretrained", "from_pretrained"], |
|
"DiffusionPipeline": ["save_pretrained", "from_pretrained"], |
|
"OnnxRuntimeModel": ["save_pretrained", "from_pretrained"], |
|
}, |
|
"transformers": { |
|
"PreTrainedTokenizer": ["save_pretrained", "from_pretrained"], |
|
"PreTrainedTokenizerFast": ["save_pretrained", "from_pretrained"], |
|
"PreTrainedModel": ["save_pretrained", "from_pretrained"], |
|
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"], |
|
"ProcessorMixin": ["save_pretrained", "from_pretrained"], |
|
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"], |
|
}, |
|
"onnxruntime.training": { |
|
"ORTModule": ["save_pretrained", "from_pretrained"], |
|
}, |
|
} |
|
|
|
ALL_IMPORTABLE_CLASSES = {} |
|
for library in LOADABLE_CLASSES: |
|
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library]) |
|
|
|
|
|
@dataclass |
|
class ImagePipelineOutput(BaseOutput): |
|
""" |
|
Output class for image pipelines. |
|
|
|
Args: |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, |
|
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
|
|
|
|
@dataclass |
|
class AudioPipelineOutput(BaseOutput): |
|
""" |
|
Output class for audio pipelines. |
|
|
|
Args: |
|
audios (`np.ndarray`) |
|
List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the |
|
denoised audio samples of the diffusion pipeline. |
|
""" |
|
|
|
audios: np.ndarray |
|
|
|
|
|
def is_safetensors_compatible(filenames, variant=None) -> bool: |
|
""" |
|
Checking for safetensors compatibility: |
|
- By default, all models are saved with the default pytorch serialization, so we use the list of default pytorch |
|
files to know which safetensors files are needed. |
|
- The model is safetensors compatible only if there is a matching safetensors file for every default pytorch file. |
|
|
|
Converting default pytorch serialized filenames to safetensors serialized filenames: |
|
- For models from the diffusers library, just replace the ".bin" extension with ".safetensors" |
|
- For models from the transformers library, the filename changes from "pytorch_model" to "model", and the ".bin" |
|
extension is replaced with ".safetensors" |
|
""" |
|
pt_filenames = [] |
|
|
|
sf_filenames = set() |
|
|
|
for filename in filenames: |
|
_, extension = os.path.splitext(filename) |
|
|
|
if extension == ".bin": |
|
pt_filenames.append(filename) |
|
elif extension == ".safetensors": |
|
sf_filenames.add(filename) |
|
|
|
for filename in pt_filenames: |
|
|
|
path, filename = os.path.split(filename) |
|
filename, extension = os.path.splitext(filename) |
|
|
|
if filename == "pytorch_model": |
|
filename = "model" |
|
elif filename == f"pytorch_model.{variant}": |
|
filename = f"model.{variant}" |
|
else: |
|
filename = filename |
|
|
|
expected_sf_filename = os.path.join(path, filename) |
|
expected_sf_filename = f"{expected_sf_filename}.safetensors" |
|
|
|
if expected_sf_filename not in sf_filenames: |
|
logger.warning(f"{expected_sf_filename} not found") |
|
return False |
|
|
|
return True |
|
|
|
|
|
def variant_compatible_siblings(info, variant=None) -> Union[List[os.PathLike], str]: |
|
filenames = set(sibling.rfilename for sibling in info.siblings) |
|
weight_names = [ |
|
WEIGHTS_NAME, |
|
SAFETENSORS_WEIGHTS_NAME, |
|
FLAX_WEIGHTS_NAME, |
|
ONNX_WEIGHTS_NAME, |
|
ONNX_EXTERNAL_WEIGHTS_NAME, |
|
] |
|
|
|
if is_transformers_available(): |
|
weight_names += [TRANSFORMERS_WEIGHTS_NAME, TRANSFORMERS_SAFE_WEIGHTS_NAME, TRANSFORMERS_FLAX_WEIGHTS_NAME] |
|
|
|
|
|
weight_prefixes = [w.split(".")[0] for w in weight_names] |
|
|
|
weight_suffixs = [w.split(".")[-1] for w in weight_names] |
|
|
|
variant_file_regex = ( |
|
re.compile(f"({'|'.join(weight_prefixes)})(.{variant}.)({'|'.join(weight_suffixs)})") |
|
if variant is not None |
|
else None |
|
) |
|
non_variant_file_regex = re.compile(f"{'|'.join(weight_names)}") |
|
|
|
if variant is not None: |
|
variant_filenames = set(f for f in filenames if variant_file_regex.match(f.split("/")[-1]) is not None) |
|
else: |
|
variant_filenames = set() |
|
|
|
non_variant_filenames = set(f for f in filenames if non_variant_file_regex.match(f.split("/")[-1]) is not None) |
|
|
|
usable_filenames = set(variant_filenames) |
|
for f in non_variant_filenames: |
|
variant_filename = f"{f.split('.')[0]}.{variant}.{f.split('.')[1]}" |
|
if variant_filename not in usable_filenames: |
|
usable_filenames.add(f) |
|
|
|
return usable_filenames, variant_filenames |
|
|
|
|
|
class DiffusionPipeline(ConfigMixin): |
|
r""" |
|
Base class for all models. |
|
|
|
[`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines |
|
and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to: |
|
|
|
- move all PyTorch modules to the device of your choice |
|
- enabling/disabling the progress bar for the denoising iteration |
|
|
|
Class attributes: |
|
|
|
- **config_name** (`str`) -- name of the config file that will store the class and module names of all |
|
components of the diffusion pipeline. |
|
- **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be |
|
passed for the pipeline to function (should be overridden by subclasses). |
|
""" |
|
config_name = "model_index.json" |
|
_optional_components = [] |
|
|
|
def register_modules(self, **kwargs): |
|
|
|
from diffusers import pipelines |
|
|
|
for name, module in kwargs.items(): |
|
|
|
if module is None: |
|
register_dict = {name: (None, None)} |
|
else: |
|
library = module.__module__.split(".")[0] |
|
|
|
|
|
pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None |
|
path = module.__module__.split(".") |
|
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir) |
|
|
|
|
|
|
|
|
|
if library not in LOADABLE_CLASSES or is_pipeline_module: |
|
library = pipeline_dir |
|
|
|
|
|
class_name = module.__class__.__name__ |
|
|
|
register_dict = {name: (library, class_name)} |
|
|
|
|
|
self.register_to_config(**register_dict) |
|
|
|
|
|
setattr(self, name, module) |
|
|
|
def save_pretrained( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
safe_serialization: bool = False, |
|
variant: Optional[str] = None, |
|
): |
|
""" |
|
Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to |
|
a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading |
|
method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
safe_serialization (`bool`, *optional*, defaults to `False`): |
|
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`). |
|
variant (`str`, *optional*): |
|
If specified, weights are saved in the format pytorch_model.<variant>.bin. |
|
""" |
|
self.save_config(save_directory) |
|
|
|
model_index_dict = dict(self.config) |
|
model_index_dict.pop("_class_name") |
|
model_index_dict.pop("_diffusers_version") |
|
model_index_dict.pop("_module", None) |
|
|
|
expected_modules, optional_kwargs = self._get_signature_keys(self) |
|
|
|
def is_saveable_module(name, value): |
|
if name not in expected_modules: |
|
return False |
|
if name in self._optional_components and value[0] is None: |
|
return False |
|
return True |
|
|
|
model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)} |
|
|
|
for pipeline_component_name in model_index_dict.keys(): |
|
sub_model = getattr(self, pipeline_component_name) |
|
model_cls = sub_model.__class__ |
|
|
|
save_method_name = None |
|
|
|
for library_name, library_classes in LOADABLE_CLASSES.items(): |
|
library = importlib.import_module(library_name) |
|
for base_class, save_load_methods in library_classes.items(): |
|
class_candidate = getattr(library, base_class, None) |
|
if class_candidate is not None and issubclass(model_cls, class_candidate): |
|
|
|
save_method_name = save_load_methods[0] |
|
break |
|
if save_method_name is not None: |
|
break |
|
|
|
save_method = getattr(sub_model, save_method_name) |
|
|
|
|
|
save_method_signature = inspect.signature(save_method) |
|
save_method_accept_safe = "safe_serialization" in save_method_signature.parameters |
|
save_method_accept_variant = "variant" in save_method_signature.parameters |
|
|
|
save_kwargs = {} |
|
if save_method_accept_safe: |
|
save_kwargs["safe_serialization"] = safe_serialization |
|
if save_method_accept_variant: |
|
save_kwargs["variant"] = variant |
|
|
|
save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs) |
|
|
|
def to(self, torch_device: Optional[Union[str, torch.device]] = None, silence_dtype_warnings: bool = False): |
|
if torch_device is None: |
|
return self |
|
|
|
|
|
def module_is_sequentially_offloaded(module): |
|
if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"): |
|
return False |
|
|
|
return hasattr(module, "_hf_hook") and not isinstance(module._hf_hook, accelerate.hooks.CpuOffload) |
|
|
|
def module_is_offloaded(module): |
|
if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"): |
|
return False |
|
|
|
return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload) |
|
|
|
|
|
pipeline_is_sequentially_offloaded = any( |
|
module_is_sequentially_offloaded(module) for _, module in self.components.items() |
|
) |
|
if pipeline_is_sequentially_offloaded and torch.device(torch_device).type == "cuda": |
|
raise ValueError( |
|
"It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading." |
|
) |
|
|
|
|
|
pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items()) |
|
if pipeline_is_offloaded and torch.device(torch_device).type == "cuda": |
|
logger.warning( |
|
f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading." |
|
) |
|
|
|
module_names, _, _ = self.extract_init_dict(dict(self.config)) |
|
is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded |
|
for name in module_names.keys(): |
|
module = getattr(self, name) |
|
if isinstance(module, torch.nn.Module): |
|
if ( |
|
module.dtype == torch.float16 |
|
and str(torch_device) in ["cpu"] |
|
and not silence_dtype_warnings |
|
and not is_offloaded |
|
): |
|
logger.warning( |
|
"Pipelines loaded with `torch_dtype=torch.float16` cannot run with `cpu` device. It" |
|
" is not recommended to move them to `cpu` as running them will fail. Please make" |
|
" sure to use an accelerator to run the pipeline in inference, due to the lack of" |
|
" support for`float16` operations on this device in PyTorch. Please, remove the" |
|
" `torch_dtype=torch.float16` argument, or use another device for inference." |
|
) |
|
module.to(torch_device) |
|
return self |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
r""" |
|
Returns: |
|
`torch.device`: The torch device on which the pipeline is located. |
|
""" |
|
module_names, _, _ = self.extract_init_dict(dict(self.config)) |
|
for name in module_names.keys(): |
|
module = getattr(self, name) |
|
if isinstance(module, torch.nn.Module): |
|
return module.device |
|
return torch.device("cpu") |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
r""" |
|
Instantiate a PyTorch diffusion pipeline from pre-trained pipeline weights. |
|
|
|
The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). |
|
|
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come |
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning |
|
task. |
|
|
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those |
|
weights are discarded. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *repo id* of a pretrained pipeline hosted inside a model repo on |
|
https://huggingface.co/ Valid repo ids have to be located under a user or organization name, like |
|
`CompVis/ldm-text2im-large-256`. |
|
- A path to a *directory* containing pipeline weights saved using |
|
[`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`. |
|
torch_dtype (`str` or `torch.dtype`, *optional*): |
|
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype |
|
will be automatically derived from the model's weights. |
|
custom_pipeline (`str`, *optional*): |
|
|
|
<Tip warning={true}> |
|
|
|
This is an experimental feature and is likely to change in the future. |
|
|
|
</Tip> |
|
|
|
Can be either: |
|
|
|
- A string, the *repo id* of a custom pipeline hosted inside a model repo on |
|
https://huggingface.co/. Valid repo ids have to be located under a user or organization name, |
|
like `hf-internal-testing/diffusers-dummy-pipeline`. |
|
|
|
<Tip> |
|
|
|
It is required that the model repo has a file, called `pipeline.py` that defines the custom |
|
pipeline. |
|
|
|
</Tip> |
|
|
|
- A string, the *file name* of a community pipeline hosted on GitHub under |
|
https://github.com/huggingface/diffusers/tree/main/examples/community. Valid file names have to |
|
match exactly the file name without `.py` located under the above link, *e.g.* |
|
`clip_guided_stable_diffusion`. |
|
|
|
<Tip> |
|
|
|
Community pipelines are always loaded from the current `main` branch of GitHub. |
|
|
|
</Tip> |
|
|
|
- A path to a *directory* containing a custom pipeline, e.g., `./my_pipeline_directory/`. |
|
|
|
<Tip> |
|
|
|
It is required that the directory has a file, called `pipeline.py` that defines the custom |
|
pipeline. |
|
|
|
</Tip> |
|
|
|
For more information on how to load and create custom pipelines, please have a look at [Loading and |
|
Adding Custom |
|
Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview) |
|
|
|
force_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the |
|
cached versions if they exist. |
|
resume_download (`bool`, *optional*, defaults to `False`): |
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a |
|
file exists. |
|
proxies (`Dict[str, str]`, *optional*): |
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', |
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
local_files_only(`bool`, *optional*, defaults to `False`): |
|
Whether or not to only look at local files (i.e., do not try to download the model). |
|
use_auth_token (`str` or *bool*, *optional*): |
|
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated |
|
when running `huggingface-cli login` (stored in `~/.huggingface`). |
|
revision (`str`, *optional*, defaults to `"main"`): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a |
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any |
|
identifier allowed by git. |
|
custom_revision (`str`, *optional*, defaults to `"main"` when loading from the Hub and to local version of `diffusers` when loading from GitHub): |
|
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to |
|
`revision` when loading a custom pipeline from the Hub. It can be a diffusers version when loading a |
|
custom pipeline from GitHub. |
|
mirror (`str`, *optional*): |
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility |
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety. |
|
Please refer to the mirror site for more information. specify the folder name here. |
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): |
|
A map that specifies where each submodule should go. It doesn't need to be refined to each |
|
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the |
|
same device. |
|
|
|
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For |
|
more information about each option see [designing a device |
|
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). |
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): |
|
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This |
|
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the |
|
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch, |
|
setting this argument to `True` will raise an error. |
|
return_cached_folder (`bool`, *optional*, defaults to `False`): |
|
If set to `True`, path to downloaded cached folder will be returned in addition to loaded pipeline. |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the |
|
specific pipeline class. The overwritten components are then directly passed to the pipelines |
|
`__init__` method. See example below for more information. |
|
variant (`str`, *optional*): |
|
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is |
|
ignored when using `from_flax`. |
|
|
|
<Tip> |
|
|
|
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated |
|
models](https://huggingface.co/docs/hub/models-gated#gated-models), *e.g.* `"runwayml/stable-diffusion-v1-5"` |
|
|
|
</Tip> |
|
|
|
<Tip> |
|
|
|
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use |
|
this method in a firewalled environment. |
|
|
|
</Tip> |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import DiffusionPipeline |
|
|
|
>>> # Download pipeline from huggingface.co and cache. |
|
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") |
|
|
|
>>> # Download pipeline that requires an authorization token |
|
>>> # For more information on access tokens, please refer to this section |
|
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens) |
|
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
|
|
>>> # Use a different scheduler |
|
>>> from diffusers import LMSDiscreteScheduler |
|
|
|
>>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.scheduler = scheduler |
|
``` |
|
""" |
|
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE) |
|
resume_download = kwargs.pop("resume_download", False) |
|
force_download = kwargs.pop("force_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE) |
|
use_auth_token = kwargs.pop("use_auth_token", None) |
|
revision = kwargs.pop("revision", None) |
|
from_flax = kwargs.pop("from_flax", False) |
|
torch_dtype = kwargs.pop("torch_dtype", None) |
|
custom_pipeline = kwargs.pop("custom_pipeline", None) |
|
custom_revision = kwargs.pop("custom_revision", None) |
|
provider = kwargs.pop("provider", None) |
|
sess_options = kwargs.pop("sess_options", None) |
|
device_map = kwargs.pop("device_map", None) |
|
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT) |
|
return_cached_folder = kwargs.pop("return_cached_folder", False) |
|
variant = kwargs.pop("variant", None) |
|
|
|
|
|
|
|
if not os.path.isdir(pretrained_model_name_or_path): |
|
config_dict = cls.load_config( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
force_download=force_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
) |
|
|
|
|
|
folder_names = [k for k, v in config_dict.items() if isinstance(v, list)] |
|
|
|
if not local_files_only: |
|
info = model_info( |
|
pretrained_model_name_or_path, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
) |
|
model_filenames, variant_filenames = variant_compatible_siblings(info, variant=variant) |
|
model_folder_names = set([os.path.split(f)[0] for f in model_filenames]) |
|
|
|
if revision in DEPRECATED_REVISION_ARGS and version.parse( |
|
version.parse(__version__).base_version |
|
) >= version.parse("0.15.0"): |
|
info = model_info( |
|
pretrained_model_name_or_path, |
|
use_auth_token=use_auth_token, |
|
revision=None, |
|
) |
|
comp_model_filenames, _ = variant_compatible_siblings(info, variant=revision) |
|
comp_model_filenames = [ |
|
".".join(f.split(".")[:1] + f.split(".")[2:]) for f in comp_model_filenames |
|
] |
|
|
|
if set(comp_model_filenames) == set(model_filenames): |
|
warnings.warn( |
|
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` even though you can load it via `variant=`{revision}`. Loading model variants via `revision='{variant}'` is deprecated and will be removed in diffusers v1. Please use `variant='{revision}'` instead.", |
|
FutureWarning, |
|
) |
|
else: |
|
warnings.warn( |
|
f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have the required variant filenames in the 'main' branch. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {revision} files' so that the correct variant file can be added.", |
|
FutureWarning, |
|
) |
|
|
|
|
|
allow_patterns = list(model_filenames) |
|
|
|
|
|
|
|
allow_patterns += [os.path.join(k, "*") for k in folder_names if k not in model_folder_names] |
|
|
|
allow_patterns += [os.path.join(k, "*.json") for k in model_folder_names] |
|
|
|
allow_patterns += [ |
|
SCHEDULER_CONFIG_NAME, |
|
CONFIG_NAME, |
|
cls.config_name, |
|
CUSTOM_PIPELINE_FILE_NAME, |
|
] |
|
|
|
if from_flax: |
|
ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"] |
|
elif is_safetensors_available() and is_safetensors_compatible(model_filenames, variant=variant): |
|
ignore_patterns = ["*.bin", "*.msgpack"] |
|
|
|
safetensors_variant_filenames = set([f for f in variant_filenames if f.endswith(".safetensors")]) |
|
safetensors_model_filenames = set([f for f in model_filenames if f.endswith(".safetensors")]) |
|
if ( |
|
len(safetensors_variant_filenames) > 0 |
|
and safetensors_model_filenames != safetensors_variant_filenames |
|
): |
|
logger.warn( |
|
f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure." |
|
) |
|
|
|
else: |
|
ignore_patterns = ["*.safetensors", "*.msgpack"] |
|
|
|
bin_variant_filenames = set([f for f in variant_filenames if f.endswith(".bin")]) |
|
bin_model_filenames = set([f for f in model_filenames if f.endswith(".bin")]) |
|
if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames: |
|
logger.warn( |
|
f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure." |
|
) |
|
|
|
else: |
|
|
|
ignore_patterns = allow_patterns = None |
|
|
|
if cls != DiffusionPipeline: |
|
requested_pipeline_class = cls.__name__ |
|
else: |
|
requested_pipeline_class = config_dict.get("_class_name", cls.__name__) |
|
user_agent = {"pipeline_class": requested_pipeline_class} |
|
if custom_pipeline is not None and not custom_pipeline.endswith(".py"): |
|
user_agent["custom_pipeline"] = custom_pipeline |
|
|
|
user_agent = http_user_agent(user_agent) |
|
|
|
|
|
cached_folder = snapshot_download( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
use_auth_token=use_auth_token, |
|
revision=revision, |
|
allow_patterns=allow_patterns, |
|
ignore_patterns=ignore_patterns, |
|
user_agent=user_agent, |
|
) |
|
else: |
|
cached_folder = pretrained_model_name_or_path |
|
config_dict = cls.load_config(cached_folder) |
|
|
|
|
|
model_variants = {} |
|
if variant is not None: |
|
for folder in os.listdir(cached_folder): |
|
folder_path = os.path.join(cached_folder, folder) |
|
is_folder = os.path.isdir(folder_path) and folder in config_dict |
|
variant_exists = is_folder and any(path.split(".")[1] == variant for path in os.listdir(folder_path)) |
|
if variant_exists: |
|
model_variants[folder] = variant |
|
|
|
|
|
|
|
if custom_pipeline is not None: |
|
if custom_pipeline.endswith(".py"): |
|
path = Path(custom_pipeline) |
|
|
|
file_name = path.name |
|
custom_pipeline = path.parent.absolute() |
|
else: |
|
file_name = CUSTOM_PIPELINE_FILE_NAME |
|
|
|
pipeline_class = get_class_from_dynamic_module( |
|
custom_pipeline, module_file=file_name, cache_dir=cache_dir, revision=custom_revision |
|
) |
|
elif cls != DiffusionPipeline: |
|
pipeline_class = cls |
|
else: |
|
diffusers_module = importlib.import_module(cls.__module__.split(".")[0]) |
|
pipeline_class = getattr(diffusers_module, config_dict["_class_name"]) |
|
|
|
|
|
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse( |
|
version.parse(config_dict["_diffusers_version"]).base_version |
|
) <= version.parse("0.5.1"): |
|
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy |
|
|
|
pipeline_class = StableDiffusionInpaintPipelineLegacy |
|
|
|
deprecation_message = ( |
|
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the" |
|
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For" |
|
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting" |
|
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your" |
|
f" checkpoint {pretrained_model_name_or_path} to the format of" |
|
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain" |
|
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0." |
|
) |
|
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
|
|
|
|
|
|
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class) |
|
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} |
|
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} |
|
|
|
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) |
|
|
|
|
|
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} |
|
init_kwargs = {**init_kwargs, **passed_pipe_kwargs} |
|
|
|
|
|
def load_module(name, value): |
|
if value[0] is None: |
|
return False |
|
if name in passed_class_obj and passed_class_obj[name] is None: |
|
return False |
|
return True |
|
|
|
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)} |
|
|
|
|
|
if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj: |
|
raise NotImplementedError( |
|
"The safety checker cannot be automatically loaded when loading weights `from_flax`." |
|
" Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker" |
|
" separately if you need it." |
|
) |
|
|
|
if len(unused_kwargs) > 0: |
|
logger.warning( |
|
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored." |
|
) |
|
|
|
if low_cpu_mem_usage and not is_accelerate_available(): |
|
low_cpu_mem_usage = False |
|
logger.warning( |
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the" |
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install" |
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip" |
|
" install accelerate\n```\n." |
|
) |
|
|
|
if device_map is not None and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `device_map=None`." |
|
) |
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"): |
|
raise NotImplementedError( |
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set" |
|
" `low_cpu_mem_usage=False`." |
|
) |
|
|
|
if low_cpu_mem_usage is False and device_map is not None: |
|
raise ValueError( |
|
f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and" |
|
" dispatching. Please make sure to set `low_cpu_mem_usage=True`." |
|
) |
|
|
|
|
|
from diffusers import pipelines |
|
|
|
|
|
for name, (library_name, class_name) in init_dict.items(): |
|
|
|
if class_name.startswith("Flax"): |
|
class_name = class_name[4:] |
|
|
|
is_pipeline_module = hasattr(pipelines, library_name) |
|
loaded_sub_model = None |
|
|
|
|
|
if name in passed_class_obj: |
|
|
|
if not is_pipeline_module: |
|
library = importlib.import_module(library_name) |
|
class_obj = getattr(library, class_name) |
|
importable_classes = LOADABLE_CLASSES[library_name] |
|
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} |
|
|
|
expected_class_obj = None |
|
for class_name, class_candidate in class_candidates.items(): |
|
if class_candidate is not None and issubclass(class_obj, class_candidate): |
|
expected_class_obj = class_candidate |
|
|
|
if not issubclass(passed_class_obj[name].__class__, expected_class_obj): |
|
raise ValueError( |
|
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be" |
|
f" {expected_class_obj}" |
|
) |
|
else: |
|
logger.warning( |
|
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it" |
|
" has the correct type" |
|
) |
|
|
|
|
|
loaded_sub_model = passed_class_obj[name] |
|
elif is_pipeline_module: |
|
pipeline_module = getattr(pipelines, library_name) |
|
class_obj = getattr(pipeline_module, class_name) |
|
importable_classes = ALL_IMPORTABLE_CLASSES |
|
class_candidates = {c: class_obj for c in importable_classes.keys()} |
|
else: |
|
|
|
library = importlib.import_module(library_name) |
|
|
|
class_obj = getattr(library, class_name) |
|
importable_classes = LOADABLE_CLASSES[library_name] |
|
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} |
|
|
|
if loaded_sub_model is None: |
|
load_method_name = None |
|
for class_name, class_candidate in class_candidates.items(): |
|
if class_candidate is not None and issubclass(class_obj, class_candidate): |
|
load_method_name = importable_classes[class_name][1] |
|
|
|
if load_method_name is None: |
|
none_module = class_obj.__module__ |
|
is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith( |
|
TRANSFORMERS_DUMMY_MODULES_FOLDER |
|
) |
|
if is_dummy_path and "dummy" in none_module: |
|
|
|
class_obj() |
|
|
|
raise ValueError( |
|
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have" |
|
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}." |
|
) |
|
|
|
load_method = getattr(class_obj, load_method_name) |
|
loading_kwargs = {} |
|
|
|
if issubclass(class_obj, torch.nn.Module): |
|
loading_kwargs["torch_dtype"] = torch_dtype |
|
if issubclass(class_obj, diffusers.OnnxRuntimeModel): |
|
loading_kwargs["provider"] = provider |
|
loading_kwargs["sess_options"] = sess_options |
|
|
|
is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin) |
|
|
|
if is_transformers_available(): |
|
transformers_version = version.parse(version.parse(transformers.__version__).base_version) |
|
else: |
|
transformers_version = "N/A" |
|
|
|
is_transformers_model = ( |
|
is_transformers_available() |
|
and issubclass(class_obj, PreTrainedModel) |
|
and transformers_version >= version.parse("4.20.0") |
|
) |
|
|
|
|
|
|
|
|
|
if is_diffusers_model or is_transformers_model: |
|
loading_kwargs["device_map"] = device_map |
|
loading_kwargs["variant"] = model_variants.pop(name, None) |
|
if from_flax: |
|
loading_kwargs["from_flax"] = True |
|
|
|
|
|
|
|
if ( |
|
is_transformers_model |
|
and loading_kwargs["variant"] is not None |
|
and transformers_version < version.parse("4.27.0") |
|
): |
|
raise ImportError( |
|
f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0" |
|
) |
|
elif is_transformers_model and loading_kwargs["variant"] is None: |
|
loading_kwargs.pop("variant") |
|
|
|
|
|
if not (from_flax and is_transformers_model): |
|
loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage |
|
else: |
|
loading_kwargs["low_cpu_mem_usage"] = False |
|
|
|
|
|
if os.path.isdir(os.path.join(cached_folder, name)): |
|
loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs) |
|
else: |
|
|
|
loaded_sub_model = load_method(cached_folder, **loading_kwargs) |
|
|
|
init_kwargs[name] = loaded_sub_model |
|
|
|
|
|
missing_modules = set(expected_modules) - set(init_kwargs.keys()) |
|
passed_modules = list(passed_class_obj.keys()) |
|
optional_modules = pipeline_class._optional_components |
|
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): |
|
for module in missing_modules: |
|
init_kwargs[module] = passed_class_obj.get(module, None) |
|
elif len(missing_modules) > 0: |
|
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs |
|
raise ValueError( |
|
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed." |
|
) |
|
|
|
|
|
model = pipeline_class(**init_kwargs) |
|
|
|
if return_cached_folder: |
|
return model, cached_folder |
|
return model |
|
|
|
@staticmethod |
|
def _get_signature_keys(obj): |
|
parameters = inspect.signature(obj.__init__).parameters |
|
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} |
|
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) |
|
expected_modules = set(required_parameters.keys()) - set(["self"]) |
|
return expected_modules, optional_parameters |
|
|
|
@property |
|
def components(self) -> Dict[str, Any]: |
|
r""" |
|
|
|
The `self.components` property can be useful to run different pipelines with the same weights and |
|
configurations to not have to re-allocate memory. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import ( |
|
... StableDiffusionPipeline, |
|
... StableDiffusionImg2ImgPipeline, |
|
... StableDiffusionInpaintPipeline, |
|
... ) |
|
|
|
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components) |
|
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components) |
|
``` |
|
|
|
Returns: |
|
A dictionary containing all the modules needed to initialize the pipeline. |
|
""" |
|
expected_modules, optional_parameters = self._get_signature_keys(self) |
|
components = { |
|
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters |
|
} |
|
|
|
if set(components.keys()) != expected_modules: |
|
raise ValueError( |
|
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected" |
|
f" {expected_modules} to be defined, but {components.keys()} are defined." |
|
) |
|
|
|
return components |
|
|
|
@staticmethod |
|
def numpy_to_pil(images): |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
if images.shape[-1] == 1: |
|
|
|
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] |
|
else: |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
def progress_bar(self, iterable=None, total=None): |
|
if not hasattr(self, "_progress_bar_config"): |
|
self._progress_bar_config = {} |
|
elif not isinstance(self._progress_bar_config, dict): |
|
raise ValueError( |
|
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}." |
|
) |
|
|
|
if iterable is not None: |
|
return tqdm(iterable, **self._progress_bar_config) |
|
elif total is not None: |
|
return tqdm(total=total, **self._progress_bar_config) |
|
else: |
|
raise ValueError("Either `total` or `iterable` has to be defined.") |
|
|
|
def set_progress_bar_config(self, **kwargs): |
|
self._progress_bar_config = kwargs |
|
|
|
def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None): |
|
r""" |
|
Enable memory efficient attention as implemented in xformers. |
|
|
|
When this option is enabled, you should observe lower GPU memory usage and a potential speed up at inference |
|
time. Speed up at training time is not guaranteed. |
|
|
|
Warning: When Memory Efficient Attention and Sliced attention are both enabled, the Memory Efficient Attention |
|
is used. |
|
|
|
Parameters: |
|
attention_op (`Callable`, *optional*): |
|
Override the default `None` operator for use as `op` argument to the |
|
[`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention) |
|
function of xFormers. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> import torch |
|
>>> from diffusers import DiffusionPipeline |
|
>>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp |
|
|
|
>>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16) |
|
>>> pipe = pipe.to("cuda") |
|
>>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp) |
|
>>> # Workaround for not accepting attention shape using VAE for Flash Attention |
|
>>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None) |
|
``` |
|
""" |
|
self.set_use_memory_efficient_attention_xformers(True, attention_op) |
|
|
|
def disable_xformers_memory_efficient_attention(self): |
|
r""" |
|
Disable memory efficient attention as implemented in xformers. |
|
""" |
|
self.set_use_memory_efficient_attention_xformers(False) |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, valid: bool, attention_op: Optional[Callable] = None |
|
) -> None: |
|
|
|
|
|
|
|
def fn_recursive_set_mem_eff(module: torch.nn.Module): |
|
if hasattr(module, "set_use_memory_efficient_attention_xformers"): |
|
module.set_use_memory_efficient_attention_xformers(valid, attention_op) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_mem_eff(child) |
|
|
|
module_names, _, _ = self.extract_init_dict(dict(self.config)) |
|
for module_name in module_names: |
|
module = getattr(self, module_name) |
|
if isinstance(module, torch.nn.Module): |
|
fn_recursive_set_mem_eff(module) |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
|
|
Args: |
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
self.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
r""" |
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go |
|
back to computing attention in one step. |
|
""" |
|
|
|
self.enable_attention_slicing(None) |
|
|
|
def set_attention_slice(self, slice_size: Optional[int]): |
|
module_names, _, _ = self.extract_init_dict(dict(self.config)) |
|
for module_name in module_names: |
|
module = getattr(self, module_name) |
|
if isinstance(module, torch.nn.Module) and hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size) |
|
|