import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration # Load the model and tokenizer with use_fast=False to avoid SentencePiece issues model_name = "valhalla/t5-base-e2e-qg" tokenizer = T5Tokenizer.from_pretrained(model_name, use_fast=False) model = T5ForConditionalGeneration.from_pretrained(model_name) def generate_questions(text): input_text = f"generate questions: {text}" input_ids = tokenizer.encode(input_text, return_tensors="pt") outputs = model.generate(input_ids, max_length=256, num_beams=4, do_sample=False) questions = tokenizer.decode(outputs[0], skip_special_tokens=True) return questions gr.Interface( fn=generate_questions, inputs=gr.Textbox(label="Enter a paragraph", lines=8), outputs="text", title="📘 Question Generator (T5)" ).launch()