genquest2 / app.py
MIRNA-MOUKHTAR2025's picture
Upload 2 files
f3e6413 verified
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
import re
# Load model and tokenizer
model_name = "valhalla/t5-base-e2e-qg"
tokenizer = T5Tokenizer.from_pretrained(model_name, use_fast=False)
model = T5ForConditionalGeneration.from_pretrained(model_name)
def generate_qas(paragraph):
sentences = re.split(r'(?<=[.!?]) +', paragraph.strip())
qas = []
for sent in sentences:
if not sent.strip():
continue
input_text = f"generate questions: {sent.strip()}"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
outputs = model.generate(input_ids, max_length=128, num_beams=4, do_sample=False)
raw_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Split on <sep> and remove duplicates and empties
questions = [q.strip() for q in raw_output.split("<sep>") if q.strip()]
seen = set()
unique_questions = []
for q in questions:
if q not in seen:
unique_questions.append(q)
seen.add(q)
for q in unique_questions:
qas.append(f"Q: {q}\nA: {sent.strip()}")
return "\n\n".join(qas)
gr.Interface(
fn=generate_qas,
inputs=gr.Textbox(label="Enter a paragraph", lines=8),
outputs=gr.Textbox(label="Generated Questions and Answers"),
title="🧠 Multi Q&A Generator",
description="Generates diverse question-answer pairs for each sentence using T5."
).launch()