import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, backend): # Force the AI to generate a website with index.html and specified backend forced_instruction = f""" You must generate a complete website structure including at least an index.html. Use the following backend structure: {backend}. Only use {backend} relevant code and structure, and don't include any other type. """ system_message = forced_instruction + "\n\n" + system_message messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a helpful assistant.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), gr.Dropdown(choices=["Flask", "Static", "Node.js"], value="Static", label="Website Backend"), ], title="WebGen AI", description="Ask the AI to build a website with a specific backend (Flask, Static, or Node.js). It will always include index.html.", ) if __name__ == "__main__": demo.launch()