import gradio as gr from huggingface_hub import InferenceClient client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p, backend): forced_system = f""" You are a code-generation AI. You MUST generate a full website including an index.html file. Use only the {backend} backend structure. Respond ONLY with raw code and file/folder structure. Do NOT explain or add commentary. """.strip() system_message = forced_system + "\n\n" + system_message messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) messages.append({"role": "user", "content": message}) response = "" for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = chunk.choices[0].delta.content if token: response += token yield response with gr.Blocks() as demo: gr.Markdown("# WebGen AI\nGenerate a complete website with your selected backend.") with gr.Row(): system_msg = gr.Textbox(value="You are a helpful assistant.", label="System Message") backend = gr.Dropdown(["Flask", "Static", "Node.js"], value="Static", label="Backend") with gr.Row(): max_tokens = gr.Slider(1, 2048, value=512, label="Max Tokens") temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") chatbot = gr.Chatbot() user_input = gr.Textbox(label="Your Prompt", placeholder="Ask the AI to generate a website...") history = [] def chat_submit(message): nonlocal history history.append([message, None]) return "", history send_btn = gr.Button("Send") def run_response(message, system_msg, max_tokens, temperature, top_p, backend): nonlocal history response_generator = respond(message, history, system_msg, max_tokens, temperature, top_p, backend) final_response = "" for chunk in response_generator: final_response = chunk yield history[:-1] + [[message, chunk]] history[-1][1] = final_response send_btn.click( chat_submit, inputs=[user_input], outputs=[user_input, chatbot] ).then( run_response, inputs=[user_input, system_msg, max_tokens, temperature, top_p, backend], outputs=chatbot ) if __name__ == "__main__": demo.launch()