File size: 9,702 Bytes
aa6f369
 
 
8531a26
aa6f369
 
8941b06
aa6f369
 
4d76afc
8531a26
aa6f369
4d76afc
 
b647320
 
 
c87b43d
8941b06
b647320
8941b06
b647320
 
 
8941b06
b647320
 
 
c87b43d
 
8941b06
b647320
 
8941b06
b647320
 
 
 
 
 
 
 
 
 
c87b43d
8941b06
b647320
8941b06
4d76afc
 
 
 
 
 
c87b43d
4d76afc
 
b647320
4d76afc
aa6f369
b647320
 
 
 
 
 
 
 
 
 
 
 
 
aa6f369
4d76afc
8531a26
4d76afc
aa6f369
 
8531a26
aa6f369
4d76afc
8531a26
b647320
c87b43d
4d76afc
aa6f369
b647320
aa6f369
 
f5a64b7
aa6f369
 
 
 
b647320
 
aa6f369
 
 
8531a26
b647320
 
 
e8a0246
4d76afc
b647320
 
aa6f369
 
4d76afc
c87b43d
8531a26
b647320
8531a26
4d76afc
8531a26
4d76afc
8531a26
8941b06
e8a0246
4d76afc
8941b06
b647320
c87b43d
8941b06
b647320
8941b06
b647320
 
 
 
 
 
 
 
 
 
c87b43d
b647320
 
 
e8a0246
aa6f369
c87b43d
b647320
 
c87b43d
aa6f369
4d76afc
8531a26
 
aa6f369
4d76afc
c87b43d
aa6f369
4d76afc
aa6f369
 
 
 
b647320
aa6f369
 
 
8531a26
4d76afc
8531a26
8941b06
aa6f369
8531a26
4d76afc
aa6f369
b647320
 
 
c87b43d
b647320
c87b43d
b647320
c87b43d
b647320
 
 
c87b43d
 
b647320
 
c87b43d
 
b647320
e3eee09
8531a26
aa6f369
8941b06
8531a26
aa6f369
4d76afc
8531a26
aa6f369
4d76afc
8531a26
e3eee09
aa6f369
4d76afc
8531a26
b647320
6541c57
f5a64b7
aa6f369
4d76afc
 
c87b43d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
from huggingface_hub import InferenceClient
import os
import re

API_TOKEN = os.getenv("HF_TOKEN", None)
MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"

try:
    print(f"Initializing Inference Client for model: {MODEL}")
    client = InferenceClient(model=MODEL, token=API_TOKEN) if API_TOKEN else InferenceClient(model=MODEL)
except Exception as e:
    raise gr.Error(f"Failed to initialize model client for {MODEL}. Error: {e}. Check HF_TOKEN and model availability.")

def parse_code_into_files(raw_response: str) -> dict:
    files = {}
    default_first_filename = "index.html"
    separator_pattern = r'\.TAB\[NAME=([^\]]+)\]\n?'

    matches = list(re.finditer(separator_pattern, raw_response))

    start_index = 0
    first_separator_pos = matches[0].start() if matches else len(raw_response)
    first_block = raw_response[start_index:first_separator_pos].strip()
    if first_block:
         files[default_first_filename] = first_block

    if matches:
        backend_filename = matches[0].group(1).strip()
        start_index = matches[0].end()

        second_separator_pos = matches[1].start() if len(matches) > 1 else len(raw_response)
        backend_code = raw_response[start_index:second_separator_pos].strip()

        if backend_code:
            files['backend_file'] = backend_code
            files['backend_filename'] = backend_filename
            if backend_filename.endswith(".py"):
                files['backend_language'] = 'python'
            elif backend_filename.endswith(".js"):
                files['backend_language'] = 'javascript'
            elif backend_filename.endswith(".css"):
                 files['backend_language'] = 'css'
            else:
                 files['backend_language'] = None

    return files

def generate_code(
    prompt: str,
    backend_choice: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
    progress=gr.Progress(track_tqdm=True)
):
    print(f"Generating code for: {prompt[:100]}... | Backend: {backend_choice}")
    progress(0, desc="Initializing Request...")

    system_message = (
         "You are an AI that generates website code. You MUST ONLY output the raw code, without any conversational text like 'Here is the code' or explanations before or after the code blocks. "
         "You MUST NOT wrap the code in markdown fences like ```html, ```python, or ```js. "
         "If the user requests 'Static' or the prompt clearly implies only frontend code, generate ONLY the content for the `index.html` file. "
         "If the user requests 'Flask' or 'Node.js' and the prompt requires backend logic, you MUST generate both the `index.html` content AND the corresponding main backend file content (e.g., `app.py` for Flask, `server.js` or `app.js` for Node.js). "
         "When generating multiple files, you MUST separate them EXACTLY as follows: "
         "1. Output the complete code for the first file (e.g., `index.html`). "
         "2. On a new line immediately after the first file's code, add the separator '.TAB[NAME=filename.ext]' (e.g., '.TAB[NAME=app.py]' or '.TAB[NAME=server.js]'). "
         "3. On the next line, immediately start the code for the second file. "
         "Generate only the necessary files (usually index.html and potentially one backend file). "
         "The generated website code must be SFW and have minimal errors. "
         "Only include comments where user modification is strictly required. Avoid explanatory comments. "
         "If the user asks you to create code that is NOT for a website, you MUST respond ONLY with the exact phrase: "
         "'hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-('"
    )

    user_prompt = f"USER_PROMPT = {prompt}\nUSER_BACKEND = {backend_choice}"

    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": user_prompt}
    ]

    full_response = ""
    token_count = 0
    est_total_tokens = max_tokens

    try:
        progress(0.1, desc="Sending Request to Model...")
        stream = client.chat_completion(
            messages=messages,
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
        )

        progress(0.2, desc="Receiving Stream...")
        for message in stream:
            token = message.choices[0].delta.content
            if isinstance(token, str):
                full_response += token
                token_count += 1
                prog = min(0.2 + (token_count / est_total_tokens) * 0.7, 0.9)
                progress(prog, desc="Generating Code...")


        progress(0.9, desc="Processing Response...")
        cleaned_response = full_response.strip()
        cleaned_response = re.sub(r"^\s*```[a-z]*\s*\n?", "", cleaned_response)
        cleaned_response = re.sub(r"\n?\s*```\s*$", "", cleaned_response)
        cleaned_response = re.sub(r"<\s*\|?\s*(user|system|assistant)\s*\|?\s*>", "", cleaned_response, flags=re.IGNORECASE).strip()
        common_phrases = [
            "Here is the code:", "Okay, here is the code:", "Here's the code:",
            "Sure, here is the code you requested:",
        ]
        temp_response_lower = cleaned_response.lower()
        for phrase in common_phrases:
            if temp_response_lower.startswith(phrase.lower()):
                cleaned_response = cleaned_response[len(phrase):].lstrip()
                temp_response_lower = cleaned_response.lower()

        refusal_message = "hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-("
        if refusal_message in full_response:
             progress(1, desc="Refusal Message Generated")
             return gr.update(value=refusal_message, language=None, visible=True), gr.update(value="", visible=False, label="Backend")

        parsed_files = parse_code_into_files(cleaned_response)

        html_code = parsed_files.get("index.html", "")
        backend_code = parsed_files.get("backend_file", "")
        backend_filename = parsed_files.get("backend_filename", "Backend")
        backend_language = parsed_files.get("backend_language", None)

        html_update = gr.update(value=html_code, language='html', visible=True)

        if backend_code:
            backend_update = gr.update(value=backend_code, language=backend_language, label=backend_filename, visible=True)
        else:
            backend_update = gr.update(value="", visible=False, label="Backend")

        progress(1, desc="Done")
        return html_update, backend_update

    except Exception as e:
        print(f"ERROR during code generation: {e}")
        progress(1, desc="Error Occurred")
        error_message = f"## Error\n\nFailed to generate or process code.\n**Reason:** {e}"
        return gr.update(value=error_message, language=None, visible=True), gr.update(value="", visible=False, label="Backend")


with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
    gr.Markdown("# ✨ Website Code Generator ✨")
    gr.Markdown(
        "Describe the website you want. The AI will generate the necessary code.\n"
        "If multiple files are generated (e.g., for Flask/Node.js), they will appear in separate tabs below."
    )

    with gr.Row():
        with gr.Column(scale=2):
            prompt_input = gr.Textbox(
                label="Website Description",
                placeholder="e.g., A Flask app with a simple chat using Socket.IO",
                lines=6,
            )
            backend_radio = gr.Radio(
                ["Static", "Flask", "Node.js"],
                label="Backend Context",
                value="Static",
                info="Guides AI if backend code (like Python/JS) is needed alongside HTML."
            )
            generate_button = gr.Button("✨ Generate Website Code", variant="primary")

        with gr.Column(scale=3):
            with gr.Tabs(elem_id="code-tabs") as code_tabs:
                with gr.Tab("index.html", elem_id="html-tab") as html_tab:
                     html_code_output = gr.Code(
                         label="index.html",
                         language="html",
                         lines=25,
                         interactive=False,
                         elem_id="html_code",
                     )
                with gr.Tab("Backend", elem_id="backend-tab", visible=False) as backend_tab:
                     backend_code_output = gr.Code(
                         label="Backend",
                         language=None,
                         lines=25,
                         interactive=False,
                         elem_id="backend_code",
                         visible=False
                     )

    with gr.Accordion("Advanced Settings", open=False):
        max_tokens_slider = gr.Slider(
            minimum=512, maximum=4096, value=3072, step=256, label="Max New Tokens"
        )
        temperature_slider = gr.Slider(
            minimum=0.1, maximum=1.2, value=0.7, step=0.1, label="Temperature"
        )
        top_p_slider = gr.Slider(
            minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P"
        )

    generate_button.click(
        fn=generate_code,
        inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
        outputs=[html_code_output, backend_code_output],
    )

if __name__ == "__main__":
    if not API_TOKEN:
        print("Warning: HF_TOKEN environment variable not set. Using anonymous access.")
    demo.queue(max_size=10).launch()