Spaces:
Running
Running
File size: 9,702 Bytes
aa6f369 8531a26 aa6f369 8941b06 aa6f369 4d76afc 8531a26 aa6f369 4d76afc b647320 c87b43d 8941b06 b647320 8941b06 b647320 8941b06 b647320 c87b43d 8941b06 b647320 8941b06 b647320 c87b43d 8941b06 b647320 8941b06 4d76afc c87b43d 4d76afc b647320 4d76afc aa6f369 b647320 aa6f369 4d76afc 8531a26 4d76afc aa6f369 8531a26 aa6f369 4d76afc 8531a26 b647320 c87b43d 4d76afc aa6f369 b647320 aa6f369 f5a64b7 aa6f369 b647320 aa6f369 8531a26 b647320 e8a0246 4d76afc b647320 aa6f369 4d76afc c87b43d 8531a26 b647320 8531a26 4d76afc 8531a26 4d76afc 8531a26 8941b06 e8a0246 4d76afc 8941b06 b647320 c87b43d 8941b06 b647320 8941b06 b647320 c87b43d b647320 e8a0246 aa6f369 c87b43d b647320 c87b43d aa6f369 4d76afc 8531a26 aa6f369 4d76afc c87b43d aa6f369 4d76afc aa6f369 b647320 aa6f369 8531a26 4d76afc 8531a26 8941b06 aa6f369 8531a26 4d76afc aa6f369 b647320 c87b43d b647320 c87b43d b647320 c87b43d b647320 c87b43d b647320 c87b43d b647320 e3eee09 8531a26 aa6f369 8941b06 8531a26 aa6f369 4d76afc 8531a26 aa6f369 4d76afc 8531a26 e3eee09 aa6f369 4d76afc 8531a26 b647320 6541c57 f5a64b7 aa6f369 4d76afc c87b43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import re
API_TOKEN = os.getenv("HF_TOKEN", None)
MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
try:
print(f"Initializing Inference Client for model: {MODEL}")
client = InferenceClient(model=MODEL, token=API_TOKEN) if API_TOKEN else InferenceClient(model=MODEL)
except Exception as e:
raise gr.Error(f"Failed to initialize model client for {MODEL}. Error: {e}. Check HF_TOKEN and model availability.")
def parse_code_into_files(raw_response: str) -> dict:
files = {}
default_first_filename = "index.html"
separator_pattern = r'\.TAB\[NAME=([^\]]+)\]\n?'
matches = list(re.finditer(separator_pattern, raw_response))
start_index = 0
first_separator_pos = matches[0].start() if matches else len(raw_response)
first_block = raw_response[start_index:first_separator_pos].strip()
if first_block:
files[default_first_filename] = first_block
if matches:
backend_filename = matches[0].group(1).strip()
start_index = matches[0].end()
second_separator_pos = matches[1].start() if len(matches) > 1 else len(raw_response)
backend_code = raw_response[start_index:second_separator_pos].strip()
if backend_code:
files['backend_file'] = backend_code
files['backend_filename'] = backend_filename
if backend_filename.endswith(".py"):
files['backend_language'] = 'python'
elif backend_filename.endswith(".js"):
files['backend_language'] = 'javascript'
elif backend_filename.endswith(".css"):
files['backend_language'] = 'css'
else:
files['backend_language'] = None
return files
def generate_code(
prompt: str,
backend_choice: str,
max_tokens: int,
temperature: float,
top_p: float,
progress=gr.Progress(track_tqdm=True)
):
print(f"Generating code for: {prompt[:100]}... | Backend: {backend_choice}")
progress(0, desc="Initializing Request...")
system_message = (
"You are an AI that generates website code. You MUST ONLY output the raw code, without any conversational text like 'Here is the code' or explanations before or after the code blocks. "
"You MUST NOT wrap the code in markdown fences like ```html, ```python, or ```js. "
"If the user requests 'Static' or the prompt clearly implies only frontend code, generate ONLY the content for the `index.html` file. "
"If the user requests 'Flask' or 'Node.js' and the prompt requires backend logic, you MUST generate both the `index.html` content AND the corresponding main backend file content (e.g., `app.py` for Flask, `server.js` or `app.js` for Node.js). "
"When generating multiple files, you MUST separate them EXACTLY as follows: "
"1. Output the complete code for the first file (e.g., `index.html`). "
"2. On a new line immediately after the first file's code, add the separator '.TAB[NAME=filename.ext]' (e.g., '.TAB[NAME=app.py]' or '.TAB[NAME=server.js]'). "
"3. On the next line, immediately start the code for the second file. "
"Generate only the necessary files (usually index.html and potentially one backend file). "
"The generated website code must be SFW and have minimal errors. "
"Only include comments where user modification is strictly required. Avoid explanatory comments. "
"If the user asks you to create code that is NOT for a website, you MUST respond ONLY with the exact phrase: "
"'hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-('"
)
user_prompt = f"USER_PROMPT = {prompt}\nUSER_BACKEND = {backend_choice}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt}
]
full_response = ""
token_count = 0
est_total_tokens = max_tokens
try:
progress(0.1, desc="Sending Request to Model...")
stream = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
progress(0.2, desc="Receiving Stream...")
for message in stream:
token = message.choices[0].delta.content
if isinstance(token, str):
full_response += token
token_count += 1
prog = min(0.2 + (token_count / est_total_tokens) * 0.7, 0.9)
progress(prog, desc="Generating Code...")
progress(0.9, desc="Processing Response...")
cleaned_response = full_response.strip()
cleaned_response = re.sub(r"^\s*```[a-z]*\s*\n?", "", cleaned_response)
cleaned_response = re.sub(r"\n?\s*```\s*$", "", cleaned_response)
cleaned_response = re.sub(r"<\s*\|?\s*(user|system|assistant)\s*\|?\s*>", "", cleaned_response, flags=re.IGNORECASE).strip()
common_phrases = [
"Here is the code:", "Okay, here is the code:", "Here's the code:",
"Sure, here is the code you requested:",
]
temp_response_lower = cleaned_response.lower()
for phrase in common_phrases:
if temp_response_lower.startswith(phrase.lower()):
cleaned_response = cleaned_response[len(phrase):].lstrip()
temp_response_lower = cleaned_response.lower()
refusal_message = "hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-("
if refusal_message in full_response:
progress(1, desc="Refusal Message Generated")
return gr.update(value=refusal_message, language=None, visible=True), gr.update(value="", visible=False, label="Backend")
parsed_files = parse_code_into_files(cleaned_response)
html_code = parsed_files.get("index.html", "")
backend_code = parsed_files.get("backend_file", "")
backend_filename = parsed_files.get("backend_filename", "Backend")
backend_language = parsed_files.get("backend_language", None)
html_update = gr.update(value=html_code, language='html', visible=True)
if backend_code:
backend_update = gr.update(value=backend_code, language=backend_language, label=backend_filename, visible=True)
else:
backend_update = gr.update(value="", visible=False, label="Backend")
progress(1, desc="Done")
return html_update, backend_update
except Exception as e:
print(f"ERROR during code generation: {e}")
progress(1, desc="Error Occurred")
error_message = f"## Error\n\nFailed to generate or process code.\n**Reason:** {e}"
return gr.update(value=error_message, language=None, visible=True), gr.update(value="", visible=False, label="Backend")
with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
gr.Markdown("# ✨ Website Code Generator ✨")
gr.Markdown(
"Describe the website you want. The AI will generate the necessary code.\n"
"If multiple files are generated (e.g., for Flask/Node.js), they will appear in separate tabs below."
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Website Description",
placeholder="e.g., A Flask app with a simple chat using Socket.IO",
lines=6,
)
backend_radio = gr.Radio(
["Static", "Flask", "Node.js"],
label="Backend Context",
value="Static",
info="Guides AI if backend code (like Python/JS) is needed alongside HTML."
)
generate_button = gr.Button("✨ Generate Website Code", variant="primary")
with gr.Column(scale=3):
with gr.Tabs(elem_id="code-tabs") as code_tabs:
with gr.Tab("index.html", elem_id="html-tab") as html_tab:
html_code_output = gr.Code(
label="index.html",
language="html",
lines=25,
interactive=False,
elem_id="html_code",
)
with gr.Tab("Backend", elem_id="backend-tab", visible=False) as backend_tab:
backend_code_output = gr.Code(
label="Backend",
language=None,
lines=25,
interactive=False,
elem_id="backend_code",
visible=False
)
with gr.Accordion("Advanced Settings", open=False):
max_tokens_slider = gr.Slider(
minimum=512, maximum=4096, value=3072, step=256, label="Max New Tokens"
)
temperature_slider = gr.Slider(
minimum=0.1, maximum=1.2, value=0.7, step=0.1, label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P"
)
generate_button.click(
fn=generate_code,
inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
outputs=[html_code_output, backend_code_output],
)
if __name__ == "__main__":
if not API_TOKEN:
print("Warning: HF_TOKEN environment variable not set. Using anonymous access.")
demo.queue(max_size=10).launch() |