Spaces:
Running
Running
File size: 9,142 Bytes
aa6f369 8531a26 aa6f369 4d76afc aa6f369 4d76afc aa6f369 4d76afc aa6f369 4d76afc 8531a26 aa6f369 4d76afc aa6f369 4d76afc aa6f369 4d76afc 8531a26 4d76afc aa6f369 8531a26 aa6f369 4d76afc 8531a26 4d76afc aa6f369 f5a64b7 aa6f369 4d76afc 8531a26 4d76afc e8a0246 4d76afc 8531a26 4d76afc aa6f369 e8a0246 4d76afc 8531a26 e8a0246 4d76afc 8531a26 4d76afc 8531a26 4d76afc 8531a26 4d76afc e8a0246 4d76afc e8a0246 aa6f369 4d76afc aa6f369 4d76afc 8531a26 aa6f369 4d76afc 8531a26 4d76afc aa6f369 4d76afc aa6f369 4d76afc aa6f369 8531a26 4d76afc 8531a26 4d76afc aa6f369 8531a26 4d76afc aa6f369 4d76afc e3eee09 8531a26 aa6f369 4d76afc f5a64b7 8531a26 aa6f369 4d76afc 8531a26 aa6f369 4d76afc 8531a26 e3eee09 aa6f369 4d76afc 8531a26 4d76afc 6541c57 f5a64b7 aa6f369 4d76afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import re
# --- Configuration ---
API_TOKEN = os.getenv("HF_TOKEN", None)
# Using a model known for better instruction following might be beneficial
MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct" # Kept your original choice, but consider testing others if needed
# --- Initialize Inference Client ---
try:
print(f"Initializing Inference Client for model: {MODEL}")
client = InferenceClient(model=MODEL, token=API_TOKEN) if API_TOKEN else InferenceClient(model=MODEL)
except Exception as e:
# Provide a more specific error message if possible
raise gr.Error(f"Failed to initialize model client for {MODEL}. Error: {e}. Check HF_TOKEN and model availability.")
# --- Core Code Generation Function ---
def generate_code(
prompt: str,
backend_choice: str,
max_tokens: int,
temperature: float,
top_p: float,
):
print(f"Generating code for: {prompt[:100]}... | Backend: {backend_choice}")
# --- Dynamically Build System Message ---
# Modified to include the specific formatting rules
system_message = (
"You are an AI that generates website code. You MUST ONLY output the raw code, without any conversational text like 'Here is the code' or explanations before or after the code blocks. "
"You MUST NOT wrap the code in markdown fences like ```html, ```python, or ```js. " # Explicit instruction to omit fences
"The user can select a backend hint (Static, Flask, Node.js). "
"If the user requests 'Static' or the prompt clearly implies only frontend code, generate ONLY the content for the `index.html` file. "
"If the user requests 'Flask' or 'Node.js' and the prompt requires backend logic (like handling forms, APIs, databases), you MUST generate both the `index.html` content AND the corresponding main backend file content (e.g., `app.py` for Flask, `server.js` or `app.js` for Node.js). "
"When generating multiple files, you MUST separate them EXACTLY as follows: "
"1. Output the complete code for the first file (e.g., `index.html`). "
"2. On a new line immediately after the first file's code, add the separator '.TAB[NAME=filename.ext]' (e.g., '.TAB[NAME=app.py]' or '.TAB[NAME=server.js]'). " # Specific separator format
"3. On the next line, immediately start the code for the second file. "
"Generate only the necessary files (usually index.html and potentially one backend file). "
"The generated website code must be SFW (safe for work) and have minimal errors. "
"Only include comments where user modification is strictly required (e.g., API keys, database paths). Avoid explanatory comments. "
"If the user asks you to create code that is NOT for a website, you MUST respond ONLY with the exact phrase: " # Specific refusal phrase
"'hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-('"
)
# User prompt remains the same, passing the raw request and backend choice
user_prompt = f"USER_PROMPT = {prompt}\nUSER_BACKEND = {backend_choice}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt}
]
response_stream = ""
full_response = ""
try:
stream = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for message in stream:
token = message.choices[0].delta.content
if isinstance(token, str):
response_stream += token
full_response += token
# Yield intermediate stream for responsiveness
yield response_stream
# --- Post-processing (Refined) ---
# Primarily focus on stripping whitespace and potential leftover model markers.
# The fence removal is kept as a fallback in case the model doesn't fully comply.
cleaned_response = full_response.strip()
# Fallback fence removal (hopefully not needed often with the new prompt)
cleaned_response = re.sub(r"^\s*```[a-z]*\s*\n?", "", cleaned_response)
cleaned_response = re.sub(r"\n?\s*```\s*$", "", cleaned_response)
# Remove potential chat markers (like <|user|>, <|assistant|>)
cleaned_response = re.sub(r"<\s*\|?\s*(user|system|assistant)\s*\|?\s*>", "", cleaned_response, flags=re.IGNORECASE).strip()
# Remove common conversational phrases if they somehow slip through despite the prompt
common_phrases = [
"Here is the code:", "Okay, here is the code:", "Here's the code:",
"Sure, here is the code you requested:", "Let me know if you need anything else.",
"```html", "```python", "```javascript", "```", # Adding fences here just in case they appear standalone
]
# Use lower() for case-insensitive matching of leading phrases
temp_response_lower = cleaned_response.lower()
for phrase in common_phrases:
if temp_response_lower.startswith(phrase.lower()):
# Use original case length for slicing
cleaned_response = cleaned_response[len(phrase):].lstrip()
temp_response_lower = cleaned_response.lower() # Update lower version after stripping
# Ensure the specific refusal message isn't accidentally cleaned
refusal_message = "hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-("
if refusal_message in full_response: # Check if the refusal message was generated
yield refusal_message # Yield the exact refusal message
else:
yield cleaned_response # Yield the cleaned code
except Exception as e:
# Log the full error for debugging on the server side
print(f"ERROR during code generation: {e}")
# Provide a user-friendly error message
yield f"## Error\n\nFailed to generate code.\n**Reason:** An unexpected error occurred. Please check the console logs or try again later."
# Consider raising a gr.Error for critical failures if preferred
# raise gr.Error(f"Code generation failed: {e}")
# --- Build Gradio Interface ---
with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
gr.Markdown("# ✨ Website Code Generator ✨")
gr.Markdown(
"Describe the website you want. The AI will generate the necessary code.\n"
"It will aim for `index.html` for 'Static', and potentially `index.html` + a backend file (like `app.py` or `server.js`) for 'Flask'/'Node.js'.\n"
"**Output Format:**\n"
"- No explanations, just code.\n"
"- Multiple files separated by `.TAB[NAME=filename.ext]` on its own line.\n"
"- Minimal necessary comments only.\n\n"
"**Rules:**\n"
"- Backend choice guides the AI on whether to include server-side code.\n"
"- Always SFW and aims for minimal errors.\n"
"- Only generates website-related code. No other types of code."
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Website Description",
placeholder="e.g., A Flask app with a form that stores data in a variable.",
lines=6,
)
backend_radio = gr.Radio(
["Static", "Flask", "Node.js"],
label="Backend Context",
value="Static",
info="Guides AI if backend code (like Python/JS) is needed alongside HTML." # Updated info text
)
generate_button = gr.Button("✨ Generate Website Code", variant="primary")
with gr.Column(scale=3):
code_output = gr.Code(
label="Generated Code", # Changed label slightly
language=None, # Set language to None for plain text display, better for mixed content
lines=30,
interactive=False,
)
with gr.Accordion("Advanced Settings", open=False):
max_tokens_slider = gr.Slider(
minimum=512,
maximum=4096, # Adjust max based on model limits if necessary
value=3072,
step=256,
label="Max New Tokens"
)
temperature_slider = gr.Slider(
minimum=0.1, maximum=1.2, value=0.7, step=0.1, label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P"
)
generate_button.click(
fn=generate_code,
inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
outputs=code_output,
)
if __name__ == "__main__":
if not API_TOKEN:
print("Warning: HF_TOKEN environment variable not set. Using anonymous access.")
demo.queue(max_size=10).launch() |