Spaces:
Running
Running
File size: 12,458 Bytes
aa6f369 8531a26 38f5ac1 aa6f369 8941b06 aa6f369 4d76afc 8531a26 aa6f369 4d76afc 38f5ac1 c87b43d 38f5ac1 8941b06 b647320 8941b06 38f5ac1 4d76afc 38f5ac1 4d76afc 38f5ac1 b647320 aa6f369 4d76afc 8531a26 4d76afc aa6f369 8531a26 aa6f369 4d76afc 8531a26 38f5ac1 4d76afc aa6f369 f5a64b7 aa6f369 b647320 aa6f369 8531a26 38f5ac1 8531a26 38f5ac1 e8a0246 38f5ac1 4d76afc 38f5ac1 b647320 e8a0246 aa6f369 38f5ac1 aa6f369 4d76afc 38f5ac1 8531a26 aa6f369 38f5ac1 aa6f369 4d76afc aa6f369 b647320 aa6f369 8531a26 4d76afc 8531a26 8941b06 aa6f369 8531a26 4d76afc aa6f369 38f5ac1 b647320 c87b43d b647320 c87b43d b647320 c87b43d b647320 38f5ac1 b647320 38f5ac1 b647320 c87b43d 38f5ac1 b647320 e3eee09 8531a26 aa6f369 8941b06 8531a26 aa6f369 4d76afc 8531a26 aa6f369 4d76afc 8531a26 e3eee09 38f5ac1 aa6f369 4d76afc 8531a26 38f5ac1 6541c57 f5a64b7 aa6f369 4d76afc c87b43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import re
# import traceback # Optional for debugging
API_TOKEN = os.getenv("HF_TOKEN", None)
MODEL = "Qwen/Qwen2.5-Coder-32B-Instruct"
try:
print(f"Initializing Inference Client for model: {MODEL}")
client = InferenceClient(model=MODEL, token=API_TOKEN) if API_TOKEN else InferenceClient(model=MODEL)
except Exception as e:
raise gr.Error(f"Failed to initialize model client for {MODEL}. Error: {e}. Check HF_TOKEN and model availability.")
# --- Helper Function to Parse Code during Streaming ---
def parse_streaming_code(current_response: str) -> dict:
"""
Parses potentially incomplete AI output stream.
Identifies if .TAB separator is present and splits code accordingly.
Returns dict with html_code, backend_code, filename, language, and visibility flag.
"""
files = {
'html_code': '',
'backend_code': '',
'backend_filename': 'Backend', # Default label
'backend_language': None,
'backend_visible': False # Default visibility
}
separator_pattern = r'\.TAB\[NAME=([^\]]+)\]\n?'
match = re.search(separator_pattern, current_response)
if match:
# Separator found in the stream so far
html_part = current_response[:match.start()].strip()
backend_part = current_response[match.end():].strip() # Code after separator
backend_filename = match.group(1).strip()
files['html_code'] = html_part
files['backend_code'] = backend_part
files['backend_filename'] = backend_filename
files['backend_visible'] = True # Make backend visible
# Determine language
if backend_filename.endswith(".py"): files['backend_language'] = 'python'
elif backend_filename.endswith(".js"): files['backend_language'] = 'javascript'
elif backend_filename.endswith(".css"): files['backend_language'] = 'css'
else: files['backend_language'] = None
else:
# No separator found yet, assume all content is HTML
files['html_code'] = current_response.strip()
# Keep backend_visible as False
return files
# --- Minimal Cleaning for Intermediate Stream Chunks ---
def clean_intermediate_stream(text: str) -> str:
""" Basic cleaning for streaming chunks (e.g., remove chat markers). """
cleaned = re.sub(r"<\s*\|?\s*(user|system|assistant)\s*\|?\s*>", "", text, flags=re.IGNORECASE)
# Avoid stripping aggressively during stream as it might remove partial code
return cleaned
# --- Core Code Generation Function - Modified for Streaming UI Updates ---
def generate_code(
prompt: str,
backend_choice: str,
max_tokens: int,
temperature: float,
top_p: float,
):
print(f"Streaming code generation for: {prompt[:100]}... | Backend: {backend_choice}")
system_message = ( # System message remains the same
"You are an AI that generates website code. You MUST ONLY output the raw code, without any conversational text like 'Here is the code' or explanations before or after the code blocks. "
"You MUST NOT wrap the code in markdown fences like ```html, ```python, or ```js. "
"If the user requests 'Static' or the prompt clearly implies only frontend code, generate ONLY the content for the `index.html` file. "
"If the user requests 'Flask' or 'Node.js' and the prompt requires backend logic, you MUST generate both the `index.html` content AND the corresponding main backend file content (e.g., `app.py` for Flask, `server.js` or `app.js` for Node.js). "
"When generating multiple files, you MUST separate them EXACTLY as follows: "
"1. Output the complete code for the first file (e.g., `index.html`). "
"2. On a new line immediately after the first file's code, add the separator '.TAB[NAME=filename.ext]' (e.g., '.TAB[NAME=app.py]' or '.TAB[NAME=server.js]'). "
"3. On the next line, immediately start the code for the second file. "
"Generate only the necessary files (usually index.html and potentially one backend file). "
"The generated website code must be SFW and have minimal errors. "
"Only include comments where user modification is strictly required. Avoid explanatory comments. "
"If the user asks you to create code that is NOT for a website, you MUST respond ONLY with the exact phrase: "
"'hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-('"
)
user_prompt = f"USER_PROMPT = {prompt}\nUSER_BACKEND = {backend_choice}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_prompt}
]
full_response = ""
# Initialize state for UI updates
current_html = ""
current_backend = ""
current_backend_label = "Backend"
current_backend_lang = None
is_backend_visible = False
# Initial clear of outputs
yield gr.update(value="", visible=True), gr.update(visible=False), gr.update(value="", visible=False)
try:
stream = client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
)
for message in stream:
token = message.choices[0].delta.content
if isinstance(token, str):
full_response += token
# Clean intermediate response minimally
cleaned_response_chunk = clean_intermediate_stream(full_response)
# Parse the *entire accumulated* cleaned response on each iteration
parsed_state = parse_streaming_code(cleaned_response_chunk)
# Update state variables
current_html = parsed_state['html_code']
current_backend = parsed_state['backend_code']
current_backend_label = parsed_state['backend_filename']
current_backend_lang = parsed_state['backend_language']
is_backend_visible = parsed_state['backend_visible'] # This determines visibility
# Prepare Gradio updates based on the *current* parsed state
html_update = gr.update(value=current_html)
# Update the backend tab's visibility
tab_update = gr.update(visible=is_backend_visible)
# Update the backend code block's content, label, language, and visibility
backend_code_update = gr.update(
value=current_backend,
label=current_backend_label,
language=current_backend_lang,
visible=is_backend_visible # Make code block visible *if* tab is visible
)
# Yield updates for html_code, backend_tab, backend_code
yield html_update, tab_update, backend_code_update
# --- Final Clean and Update after Stream ---
# Ensure the final state is clean and fully parsed
final_cleaned_response = full_response.strip()
# Remove fences/phrases missed during stream (optional but good practice)
final_cleaned_response = re.sub(r"^\s*```[a-z]*\s*\n?", "", final_cleaned_response)
final_cleaned_response = re.sub(r"\n?\s*```\s*$", "", final_cleaned_response)
common_phrases = ["Here is the code:", "Okay, here is the code:", "Here's the code:", "Sure, here is the code you requested:"]
temp_lower = final_cleaned_response.lower()
for phrase in common_phrases:
if temp_lower.startswith(phrase.lower()):
final_cleaned_response = final_cleaned_response[len(phrase):].lstrip()
temp_lower = final_cleaned_response.lower()
# Check for refusal message in the final response
refusal_message = "hey there! am here to create websites for you unfortunately am programmed to not create codes! otherwise I would go on the naughty list :-("
if refusal_message in final_cleaned_response:
yield gr.update(value=refusal_message), gr.update(visible=False), gr.update(value="", visible=False)
return # Stop processing
# Final parse
final_parsed_state = parse_streaming_code(final_cleaned_response)
# Final updates to ensure everything is correct
final_html_update = gr.update(value=final_parsed_state['html_code'])
final_tab_update = gr.update(visible=final_parsed_state['backend_visible'])
final_backend_code_update = gr.update(
value=final_parsed_state['backend_code'],
label=final_parsed_state['backend_filename'],
language=final_parsed_state['backend_language'],
visible=final_parsed_state['backend_visible']
)
yield final_html_update, final_tab_update, final_backend_code_update
except Exception as e:
print(f"ERROR during code generation stream: {e}")
# traceback.print_exc() # Uncomment for detailed traceback
error_message = f"## Error\n\nFailed during streaming.\n**Reason:** {e}"
# Show error in HTML block, hide backend tab and code
yield gr.update(value=error_message), gr.update(visible=False), gr.update(value="", visible=False)
# --- Build Gradio Interface ---
with gr.Blocks(css=".gradio-container { max-width: 90% !important; }") as demo:
gr.Markdown("# ✨ Website Code Generator ✨")
gr.Markdown(
"Describe the website you want. See code generated live.\n"
"If backend code is generated, a second tab will appear."
)
with gr.Row():
with gr.Column(scale=2):
prompt_input = gr.Textbox(
label="Website Description",
placeholder="e.g., A Flask app with a simple chat using Socket.IO",
lines=6,
)
backend_radio = gr.Radio(
["Static", "Flask", "Node.js"],
label="Backend Context",
value="Static",
info="Guides AI if backend code (like Python/JS) is needed alongside HTML."
)
generate_button = gr.Button("✨ Generate Website Code", variant="primary")
with gr.Column(scale=3):
# Define Tabs structure
with gr.Tabs(elem_id="code-tabs"):
# Tab 1: Always present for HTML
with gr.Tab("index.html", elem_id="html-tab") as html_tab:
html_code_output = gr.Code(
label="index.html",
language="html",
lines=25,
interactive=False,
elem_id="html_code",
)
# Tab 2: Backend - defined but starts hidden
with gr.Tab("Backend", elem_id="backend-tab", visible=False) as backend_tab:
backend_code_output = gr.Code(
label="Backend", # Label updated dynamically if tab becomes visible
language=None, # Language updated dynamically
lines=25,
interactive=False,
elem_id="backend_code",
visible=False # Code block also starts hidden
)
with gr.Accordion("Advanced Settings", open=False):
max_tokens_slider = gr.Slider(
minimum=512, maximum=4096, value=3072, step=256, label="Max New Tokens"
)
temperature_slider = gr.Slider(
minimum=0.1, maximum=1.2, value=0.7, step=0.1, label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-P"
)
# Click function now targets html_code_output, backend_tab, and backend_code_output
generate_button.click(
fn=generate_code,
inputs=[prompt_input, backend_radio, max_tokens_slider, temperature_slider, top_p_slider],
# Outputs MUST match the number and order of updates yielded by the function
outputs=[html_code_output, backend_tab, backend_code_output],
)
if __name__ == "__main__":
if not API_TOKEN:
print("Warning: HF_TOKEN environment variable not set. Using anonymous access.")
demo.queue(max_size=10).launch() |