Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,28 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
-
# Load DeepSeek
|
5 |
-
deepseek_tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1")
|
6 |
-
deepseek_model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1", torch_dtype="auto", device_map="auto")
|
7 |
deepseek_pipe = pipeline("text-generation", model=deepseek_model, tokenizer=deepseek_tokenizer)
|
8 |
|
9 |
-
# Load LLaMA
|
10 |
-
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-4-Scout-17B-16E-Instruct")
|
11 |
-
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-4-Scout-17B-16E-Instruct", torch_dtype="auto", device_map="auto")
|
12 |
llama_pipe = pipeline("text-generation", model=llama_model, tokenizer=llama_tokenizer)
|
13 |
|
14 |
def generate_and_enhance_code(code_request: str, features: str):
|
15 |
-
#
|
16 |
base_output = deepseek_pipe(code_request, max_new_tokens=512, do_sample=True, temperature=0.7)[0]["generated_text"]
|
17 |
|
18 |
-
#
|
19 |
enhancement_prompt = f"Hey Llama! can you please add some more features in my code?\n\nOriginal code:\n{base_output}\n\nFeatures to add:\n{features}\n\nAdd the features and pass me the code without any extra asking!"
|
20 |
enhanced_output = llama_pipe(enhancement_prompt, max_new_tokens=1024, do_sample=True, temperature=0.6)[0]["generated_text"]
|
21 |
|
22 |
return enhanced_output
|
23 |
|
24 |
with gr.Blocks() as demo:
|
25 |
-
gr.Markdown("##
|
26 |
with gr.Row():
|
27 |
code_input = gr.Textbox(lines=5, label="What code do you want?")
|
28 |
feature_input = gr.Textbox(lines=3, label="What features should LLaMA add?")
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
|
4 |
+
# Load DeepSeek with trust_remote_code
|
5 |
+
deepseek_tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True)
|
6 |
+
deepseek_model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1", trust_remote_code=True, torch_dtype="auto", device_map="auto")
|
7 |
deepseek_pipe = pipeline("text-generation", model=deepseek_model, tokenizer=deepseek_tokenizer)
|
8 |
|
9 |
+
# Load LLaMA with trust_remote_code
|
10 |
+
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-4-Scout-17B-16E-Instruct", trust_remote_code=True)
|
11 |
+
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-4-Scout-17B-16E-Instruct", trust_remote_code=True, torch_dtype="auto", device_map="auto")
|
12 |
llama_pipe = pipeline("text-generation", model=llama_model, tokenizer=llama_tokenizer)
|
13 |
|
14 |
def generate_and_enhance_code(code_request: str, features: str):
|
15 |
+
# Generate base code from DeepSeek
|
16 |
base_output = deepseek_pipe(code_request, max_new_tokens=512, do_sample=True, temperature=0.7)[0]["generated_text"]
|
17 |
|
18 |
+
# Enhance with LLaMA
|
19 |
enhancement_prompt = f"Hey Llama! can you please add some more features in my code?\n\nOriginal code:\n{base_output}\n\nFeatures to add:\n{features}\n\nAdd the features and pass me the code without any extra asking!"
|
20 |
enhanced_output = llama_pipe(enhancement_prompt, max_new_tokens=1024, do_sample=True, temperature=0.6)[0]["generated_text"]
|
21 |
|
22 |
return enhanced_output
|
23 |
|
24 |
with gr.Blocks() as demo:
|
25 |
+
gr.Markdown("## MINEOGO: DeepSeek + LLaMA Code Assistant")
|
26 |
with gr.Row():
|
27 |
code_input = gr.Textbox(lines=5, label="What code do you want?")
|
28 |
feature_input = gr.Textbox(lines=3, label="What features should LLaMA add?")
|