MINEOGO commited on
Commit
eb6fd61
·
verified ·
1 Parent(s): fbd511e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -63
app.py CHANGED
@@ -1,64 +1,37 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import DalleBartProcessor, DalleBartForConditionalGeneration
4
+ from PIL import Image
5
+ import numpy as np
6
+ import cv2
7
+
8
+ # Load model and processor
9
+ processor = DalleBartProcessor.from_pretrained("dalle-mini/dalle-mini/mega-1-fp16")
10
+ model = DalleBartForConditionalGeneration.from_pretrained("dalle-mini/dalle-mini/mega-1-fp16")
11
+
12
+ # Force CPU
13
+ model.to("cpu")
14
+
15
+ def image_to_sketch(pil_img):
16
+ img = np.array(pil_img.convert("L"))
17
+ inv = 255 - img
18
+ blur = cv2.GaussianBlur(inv, (21, 21), 0)
19
+ sketch = cv2.divide(img, 255 - blur, scale=256)
20
+ return Image.fromarray(sketch)
21
+
22
+ def generate_sketch(prompt):
23
+ prompt = prompt + ", pencil sketch, line drawing, black and white, minimal"
24
+ inputs = processor([prompt], return_tensors="pt").to("cpu")
25
+
26
+ output_ids = model.generate(**inputs, max_length=256)
27
+ image = processor.decode(output_ids[0], output_type=Image)
28
+
29
+ sketch = image_to_sketch(image)
30
+ return sketch
31
+
32
+ gr.Interface(
33
+ fn=generate_sketch,
34
+ inputs=gr.Textbox(placeholder="Enter a description, e.g. 'a cat on a skateboard'"),
35
+ outputs="image",
36
+ title="Text to Sketch Generator"
37
+ ).launch()