Spaces:
Runtime error
Runtime error
Upload tool
Browse files- app.py +6 -0
- requirements.txt +4 -0
- tool.py +137 -0
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import launch_gradio_demo
|
2 |
+
from tool import SimpleTool
|
3 |
+
|
4 |
+
tool = SimpleTool()
|
5 |
+
|
6 |
+
launch_gradio_demo(tool)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bs4
|
2 |
+
requests
|
3 |
+
transformers
|
4 |
+
smolagents
|
tool.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import Tool
|
2 |
+
from typing import Any, Optional
|
3 |
+
|
4 |
+
class SimpleTool(Tool):
|
5 |
+
name = "web_analyzer"
|
6 |
+
description = "Advanced web content analyzer with AI-powered analysis."
|
7 |
+
inputs = {"url":{"type":"string","description":"The webpage URL to analyze."},"mode":{"type":"string","nullable":True,"description":"Analysis mode ('analyze', 'summarize', 'sentiment', 'topics')."}}
|
8 |
+
output_type = "string"
|
9 |
+
|
10 |
+
def forward(self, url: str, mode: str = "analyze") -> str:
|
11 |
+
"""Advanced web content analyzer with AI-powered analysis.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
url: The webpage URL to analyze.
|
15 |
+
mode: Analysis mode ('analyze', 'summarize', 'sentiment', 'topics').
|
16 |
+
|
17 |
+
Returns:
|
18 |
+
str: AI-enhanced analysis of web content.
|
19 |
+
"""
|
20 |
+
import requests
|
21 |
+
from bs4 import BeautifulSoup
|
22 |
+
import re
|
23 |
+
from transformers import pipeline
|
24 |
+
|
25 |
+
try:
|
26 |
+
# Setup headers
|
27 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)'}
|
28 |
+
|
29 |
+
# Fetch content
|
30 |
+
response = requests.get(url, headers=headers, timeout=10)
|
31 |
+
response.raise_for_status()
|
32 |
+
|
33 |
+
# Parse content
|
34 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
35 |
+
for tag in soup(['script', 'style', 'meta']):
|
36 |
+
tag.decompose()
|
37 |
+
|
38 |
+
# Get cleaned text
|
39 |
+
title = soup.title.string if soup.title else "No title found"
|
40 |
+
title = re.sub(r'\s+', ' ', title).strip()
|
41 |
+
text_content = re.sub(r'\s+', ' ', soup.get_text()).strip()
|
42 |
+
|
43 |
+
# Initialize ML models based on mode
|
44 |
+
if mode == "analyze":
|
45 |
+
# Basic analysis with summary
|
46 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
47 |
+
classifier = pipeline("text-classification",
|
48 |
+
model="nlptown/bert-base-multilingual-uncased-sentiment")
|
49 |
+
|
50 |
+
# Get summary and sentiment
|
51 |
+
summary = summarizer(text_content[:1024], max_length=100, min_length=30)[0]['summary_text']
|
52 |
+
sentiment = classifier(text_content[:512])[0]
|
53 |
+
sent_score = int(sentiment['label'][0])
|
54 |
+
sent_text = ["Very Negative", "Negative", "Neutral", "Positive", "Very Positive"][sent_score-1]
|
55 |
+
|
56 |
+
# Format output
|
57 |
+
return f"""π Content Analysis
|
58 |
+
|
59 |
+
Title: {title}
|
60 |
+
Length: {len(text_content)} characters
|
61 |
+
|
62 |
+
π AI Summary:
|
63 |
+
{summary}
|
64 |
+
|
65 |
+
π Overall Sentiment: {sent_text} ({sent_score}/5)"""
|
66 |
+
|
67 |
+
elif mode == "summarize":
|
68 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
69 |
+
|
70 |
+
# Process in chunks
|
71 |
+
chunk_size = 1024
|
72 |
+
summaries = []
|
73 |
+
|
74 |
+
for i in range(0, min(len(text_content), 3072), chunk_size):
|
75 |
+
chunk = text_content[i:i+chunk_size]
|
76 |
+
if len(chunk) > 100:
|
77 |
+
summary = summarizer(chunk, max_length=100, min_length=30)[0]['summary_text']
|
78 |
+
summaries.append(summary)
|
79 |
+
|
80 |
+
return f"""π Multi-Section Summary
|
81 |
+
|
82 |
+
Title: {title}
|
83 |
+
|
84 |
+
{' '.join(summaries)}"""
|
85 |
+
|
86 |
+
elif mode == "sentiment":
|
87 |
+
classifier = pipeline("text-classification",
|
88 |
+
model="nlptown/bert-base-multilingual-uncased-sentiment")
|
89 |
+
|
90 |
+
# Analyze paragraphs
|
91 |
+
paragraphs = soup.find_all('p')
|
92 |
+
sentiments = ""
|
93 |
+
count = 0
|
94 |
+
|
95 |
+
for p in paragraphs:
|
96 |
+
text = p.text.strip()
|
97 |
+
if len(text) > 50:
|
98 |
+
result = classifier(text[:512])[0]
|
99 |
+
score = int(result['label'][0])
|
100 |
+
mood = ["Very Negative", "Negative", "Neutral", "Positive", "Very Positive"][score-1]
|
101 |
+
sentiments += f"\nSection {count + 1}: {mood} ({score}/5 stars)"
|
102 |
+
count += 1
|
103 |
+
if count >= 5:
|
104 |
+
break
|
105 |
+
|
106 |
+
return f"""π Sentiment Analysis
|
107 |
+
|
108 |
+
Title: {title}
|
109 |
+
{sentiments}"""
|
110 |
+
|
111 |
+
elif mode == "topics":
|
112 |
+
classifier = pipeline("zero-shot-classification",
|
113 |
+
model="facebook/bart-large-mnli")
|
114 |
+
|
115 |
+
topics = [
|
116 |
+
"Technology", "AI/ML", "Business", "Science",
|
117 |
+
"Innovation", "Research", "Industry News"
|
118 |
+
]
|
119 |
+
|
120 |
+
results = classifier(text_content[:512], topics)
|
121 |
+
|
122 |
+
topic_analysis = "Detected Topics:\n"
|
123 |
+
for topic, score in zip(results['labels'], results['scores']):
|
124 |
+
if score > 0.1:
|
125 |
+
topic_analysis += f"- {topic}: {score*100:.1f}% confidence\n"
|
126 |
+
|
127 |
+
return f"""π― Topic Classification
|
128 |
+
|
129 |
+
Title: {title}
|
130 |
+
|
131 |
+
{topic_analysis}"""
|
132 |
+
|
133 |
+
else:
|
134 |
+
return f"Error: Unknown mode '{mode}'"
|
135 |
+
|
136 |
+
except Exception as e:
|
137 |
+
return f"Error processing webpage: {str(e)}"
|