import torch from src.diffusion.base.guidance import * from src.diffusion.base.scheduling import * from src.diffusion.base.sampling import * from typing import Callable def shift_respace_fn(t, shift=3.0): return t / (t + (1 - t) * shift) def ode_step_fn(x, v, dt, s, w): return x + v * dt def sde_mean_step_fn(x, v, dt, s, w): return x + v * dt + s * w * dt def sde_step_fn(x, v, dt, s, w): return x + v*dt + s * w* dt + torch.sqrt(2*w*dt)*torch.randn_like(x) def sde_preserve_step_fn(x, v, dt, s, w): return x + v*dt + 0.5*s*w* dt + torch.sqrt(w*dt)*torch.randn_like(x) import logging logger = logging.getLogger(__name__) class EulerSampler(BaseSampler): def __init__( self, w_scheduler: BaseScheduler = None, timeshift=1.0, guidance_interval_min: float = 0.0, guidance_interval_max: float = 1.0, state_refresh_rate=1, step_fn: Callable = ode_step_fn, last_step=None, last_step_fn: Callable = ode_step_fn, *args, **kwargs ): super().__init__(*args, **kwargs) self.step_fn = step_fn self.last_step = last_step self.last_step_fn = last_step_fn self.w_scheduler = w_scheduler self.timeshift = timeshift self.state_refresh_rate = state_refresh_rate self.guidance_interval_min = guidance_interval_min self.guidance_interval_max = guidance_interval_max if self.last_step is None or self.num_steps == 1: self.last_step = 1.0 / self.num_steps timesteps = torch.linspace(0.0, 1 - self.last_step, self.num_steps) timesteps = torch.cat([timesteps, torch.tensor([1.0])], dim=0) self.timesteps = shift_respace_fn(timesteps, self.timeshift) assert self.last_step > 0.0 assert self.scheduler is not None assert self.w_scheduler is not None or self.step_fn in [ode_step_fn, ] if self.w_scheduler is not None: if self.step_fn == ode_step_fn: logger.warning("current sampler is ODE sampler, but w_scheduler is enabled") def _impl_sampling(self, net, noise, condition, uncondition): """ sampling process of Euler sampler - """ batch_size = noise.shape[0] steps = self.timesteps.to(noise.device) cfg_condition = torch.cat([uncondition, condition], dim=0) x = noise state = None for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])): dt = t_next - t_cur t_cur = t_cur.repeat(batch_size) sigma = self.scheduler.sigma(t_cur) dalpha_over_alpha = self.scheduler.dalpha_over_alpha(t_cur) dsigma_mul_sigma = self.scheduler.dsigma_mul_sigma(t_cur) if self.w_scheduler: w = self.w_scheduler.w(t_cur) else: w = 0.0 cfg_x = torch.cat([x, x], dim=0) cfg_t = t_cur.repeat(2) if i % self.state_refresh_rate == 0: state = None out, state = net(cfg_x, cfg_t, cfg_condition, state) if t_cur[0] > self.guidance_interval_min and t_cur[0] < self.guidance_interval_max: out = self.guidance_fn(out, self.guidance) else: out = self.guidance_fn(out, 1.0) v = out s = ((1/dalpha_over_alpha)*v - x)/(sigma**2 - (1/dalpha_over_alpha)*dsigma_mul_sigma) if i < self.num_steps -1 : x = self.step_fn(x, v, dt, s=s, w=w) else: x = self.last_step_fn(x, v, dt, s=s, w=w) return x