import math import torch from src.diffusion.base.scheduling import * class LinearScheduler(BaseScheduler): def alpha(self, t) -> Tensor: return (t).view(-1, 1, 1, 1) def sigma(self, t) -> Tensor: return (1-t).view(-1, 1, 1, 1) def dalpha(self, t) -> Tensor: return torch.full_like(t, 1.0).view(-1, 1, 1, 1) def dsigma(self, t) -> Tensor: return torch.full_like(t, -1.0).view(-1, 1, 1, 1) # SoTA for ImageNet! class GVPScheduler(BaseScheduler): def alpha(self, t) -> Tensor: return torch.cos(t * (math.pi / 2)).view(-1, 1, 1, 1) def sigma(self, t) -> Tensor: return torch.sin(t * (math.pi / 2)).view(-1, 1, 1, 1) def dalpha(self, t) -> Tensor: return -torch.sin(t * (math.pi / 2)).view(-1, 1, 1, 1) def dsigma(self, t) -> Tensor: return torch.cos(t * (math.pi / 2)).view(-1, 1, 1, 1) def w(self, t): return torch.sin(t)**2 class ConstScheduler(BaseScheduler): def w(self, t): return torch.ones(1, 1, 1, 1).to(t.device, t.dtype) from src.diffusion.ddpm.scheduling import VPScheduler class VPBetaScheduler(VPScheduler): def w(self, t): return self.beta(t).view(-1, 1, 1, 1)