import torch from src.diffusion.base.scheduling import * from src.diffusion.base.sampling import * from typing import Callable def ode_step_fn(x, eps, beta, sigma, dt): return x + (-0.5*beta*x + 0.5*eps*beta/sigma)*dt def sde_step_fn(x, eps, beta, sigma, dt): return x + (-0.5*beta*x + eps*beta/sigma)*dt + torch.sqrt(dt.abs()*beta)*torch.randn_like(x) import logging logger = logging.getLogger(__name__) class VPEulerSampler(BaseSampler): def __init__( self, train_max_t=1000, guidance_fn: Callable = None, step_fn: Callable = ode_step_fn, last_step=None, last_step_fn: Callable = ode_step_fn, *args, **kwargs ): super().__init__(*args, **kwargs) self.guidance_fn = guidance_fn self.step_fn = step_fn self.last_step = last_step self.last_step_fn = last_step_fn self.train_max_t = train_max_t if self.last_step is None or self.num_steps == 1: self.last_step = 1.0 / self.num_steps assert self.last_step > 0.0 assert self.scheduler is not None def _impl_sampling(self, net, noise, condition, uncondition): batch_size = noise.shape[0] steps = torch.linspace(1.0, self.last_step, self.num_steps, device=noise.device) steps = torch.cat([steps, torch.tensor([0.0], device=noise.device)], dim=0) cfg_condition = torch.cat([uncondition, condition], dim=0) x = noise for i, (t_cur, t_next) in enumerate(zip(steps[:-1], steps[1:])): dt = t_next - t_cur t_cur = t_cur.repeat(batch_size) sigma = self.scheduler.sigma(t_cur) beta = self.scheduler.beta(t_cur) cfg_x = torch.cat([x, x], dim=0) cfg_t = t_cur.repeat(2) out = net(cfg_x, cfg_t*self.train_max_t, cfg_condition) eps = self.guidance_fn(out, self.guidance) if i < self.num_steps -1 : x0 = self.last_step_fn(x, eps, beta, sigma, -t_cur[0]) x = self.step_fn(x, eps, beta, sigma, dt) else: x = x0 = self.last_step_fn(x, eps, beta, sigma, -self.last_step) return x