import os.path import random import torch from torch.utils.data import Dataset class RandomNDataset(Dataset): def __init__(self, latent_shape=(4, 64, 64), num_classes=1000, selected_classes:list=None, seeds=None, max_num_instances=50000, ): self.selected_classes = selected_classes if selected_classes is not None: num_classes = len(selected_classes) max_num_instances = 10*num_classes self.num_classes = num_classes self.seeds = seeds if seeds is not None: self.max_num_instances = len(seeds)*num_classes self.num_seeds = len(seeds) else: self.num_seeds = (max_num_instances + num_classes - 1) // num_classes self.max_num_instances = self.num_seeds*num_classes self.latent_shape = latent_shape def __getitem__(self, idx): label = idx // self.num_seeds if self.selected_classes: label = self.selected_classes[label] seed = random.randint(0, 1<<31) #idx % self.num_seeds if self.seeds is not None: seed = self.seeds[idx % self.num_seeds] # cls_dir = os.path.join(self.root, f"{label}") filename = f"{label}_{seed}.png", generator = torch.Generator().manual_seed(seed) latent = torch.randn(self.latent_shape, generator=generator, dtype=torch.float32) return latent, label, filename def __len__(self): return self.max_num_instances