DDT / src /diffusion /flow_matching /training_repa.py
wangshuai6
init space
9e426da
import torch
import copy
import timm
from torch.nn import Parameter
from src.utils.no_grad import no_grad
from typing import Callable, Iterator, Tuple
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from torchvision.transforms import Normalize
from src.diffusion.base.training import *
from src.diffusion.base.scheduling import BaseScheduler
def inverse_sigma(alpha, sigma):
return 1/sigma**2
def snr(alpha, sigma):
return alpha/sigma
def minsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, min=threshold)
def maxsnr(alpha, sigma, threshold=5):
return torch.clip(alpha/sigma, max=threshold)
def constant(alpha, sigma):
return 1
class DINOv2(nn.Module):
def __init__(self, weight_path:str):
super(DINOv2, self).__init__()
self.encoder = torch.hub.load('facebookresearch/dinov2', weight_path)
self.pos_embed = copy.deepcopy(self.encoder.pos_embed)
self.encoder.head = torch.nn.Identity()
self.patch_size = self.encoder.patch_embed.patch_size
self.precomputed_pos_embed = dict()
def fetch_pos(self, h, w):
key = (h, w)
if key in self.precomputed_pos_embed:
return self.precomputed_pos_embed[key]
value = timm.layers.pos_embed.resample_abs_pos_embed(
self.pos_embed.data, [h, w],
)
self.precomputed_pos_embed[key] = value
return value
def forward(self, x):
b, c, h, w = x.shape
x = Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)(x)
x = torch.nn.functional.interpolate(x, (int(224*h/256), int(224*w/256)), mode='bicubic')
b, c, h, w = x.shape
patch_num_h, patch_num_w = h//self.patch_size[0], w//self.patch_size[1]
pos_embed_data = self.fetch_pos(patch_num_h, patch_num_w)
self.encoder.pos_embed.data = pos_embed_data
feature = self.encoder.forward_features(x)['x_norm_patchtokens']
return feature
class REPATrainer(BaseTrainer):
def __init__(
self,
scheduler: BaseScheduler,
loss_weight_fn:Callable=constant,
feat_loss_weight: float=0.5,
lognorm_t=False,
encoder_weight_path=None,
align_layer=8,
proj_denoiser_dim=256,
proj_hidden_dim=256,
proj_encoder_dim=256,
*args,
**kwargs
):
super().__init__(*args, **kwargs)
self.lognorm_t = lognorm_t
self.scheduler = scheduler
self.loss_weight_fn = loss_weight_fn
self.feat_loss_weight = feat_loss_weight
self.align_layer = align_layer
self.encoder = DINOv2(encoder_weight_path)
no_grad(self.encoder)
self.proj = nn.Sequential(
nn.Sequential(
nn.Linear(proj_denoiser_dim, proj_hidden_dim),
nn.SiLU(),
nn.Linear(proj_hidden_dim, proj_hidden_dim),
nn.SiLU(),
nn.Linear(proj_hidden_dim, proj_encoder_dim),
)
)
def _impl_trainstep(self, net, ema_net, raw_images, x, y):
batch_size, c, height, width = x.shape
if self.lognorm_t:
base_t = torch.randn((batch_size), device=x.device, dtype=x.dtype).sigmoid()
else:
base_t = torch.rand((batch_size), device=x.device, dtype=x.dtype)
t = base_t
noise = torch.randn_like(x)
alpha = self.scheduler.alpha(t)
dalpha = self.scheduler.dalpha(t)
sigma = self.scheduler.sigma(t)
dsigma = self.scheduler.dsigma(t)
x_t = alpha * x + noise * sigma
v_t = dalpha * x + dsigma * noise
src_feature = []
def forward_hook(net, input, output):
src_feature.append(output)
handle = net.blocks[self.align_layer - 1].register_forward_hook(forward_hook)
out = net(x_t, t, y)
src_feature = self.proj(src_feature[0])
handle.remove()
with torch.no_grad():
dst_feature = self.encoder(raw_images)
cos_sim = torch.nn.functional.cosine_similarity(src_feature, dst_feature, dim=-1)
cos_loss = 1 - cos_sim
weight = self.loss_weight_fn(alpha, sigma)
fm_loss = weight*(out - v_t)**2
out = dict(
fm_loss=fm_loss.mean(),
cos_loss=cos_loss.mean(),
loss=fm_loss.mean() + self.feat_loss_weight*cos_loss.mean(),
)
return out
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
self.proj.state_dict(
destination=destination,
prefix=prefix + "proj.",
keep_vars=keep_vars)