File size: 11,643 Bytes
9e426da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import functools
from typing import Tuple
import torch
import torch.nn as nn
import math

from torch.nn.init import zeros_
from torch.nn.modules.module import T

# from torch.nn.attention.flex_attention import flex_attention, create_block_mask
from torch.nn.functional import scaled_dot_product_attention


def modulate(x, shift, scale):
    return x * (1 + scale) + shift

class Embed(nn.Module):
    def __init__(
            self,
            in_chans: int = 3,
            embed_dim: int = 768,
            norm_layer = None,
            bias: bool = True,
    ):
        super().__init__()
        self.in_chans = in_chans
        self.embed_dim = embed_dim
        self.proj = nn.Linear(in_chans, embed_dim, bias=bias)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)
        return x

class TimestepEmbedder(nn.Module):

    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10):
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half
        )
        args = t[..., None].float() * freqs[None, ...]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb

class LabelEmbedder(nn.Module):
    def __init__(self, num_classes, hidden_size):
        super().__init__()
        self.embedding_table = nn.Embedding(num_classes, hidden_size)
        self.num_classes = num_classes

    def forward(self, labels,):
        embeddings = self.embedding_table(labels)
        return embeddings

class FinalLayer(nn.Module):
    def __init__(self, hidden_size, out_channels):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, out_channels, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.Linear(hidden_size, 2*hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x

class RMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return (self.weight * hidden_states).to(input_dtype)

class FeedForward(nn.Module):
    def __init__(
        self,
        dim: int,
        hidden_dim: int,
    ):
        super().__init__()
        hidden_dim = int(2 * hidden_dim / 3)
        self.w1 = nn.Linear(dim, hidden_dim, bias=False)
        self.w3 = nn.Linear(dim, hidden_dim, bias=False)
        self.w2 = nn.Linear(hidden_dim, dim, bias=False)
    def forward(self, x):
        x =  self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
        return x

def precompute_freqs_cis_2d(dim: int, height: int, width:int, theta: float = 10000.0, scale=16.0):
    # assert  H * H == end
    # flat_patch_pos = torch.linspace(-1, 1, end) # N = end
    x_pos = torch.linspace(0, scale, width)
    y_pos = torch.linspace(0, scale, height)
    y_pos, x_pos = torch.meshgrid(y_pos, x_pos, indexing="ij")
    y_pos = y_pos.reshape(-1)
    x_pos = x_pos.reshape(-1)
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim)) # Hc/4
    x_freqs = torch.outer(x_pos, freqs).float() # N Hc/4
    y_freqs = torch.outer(y_pos, freqs).float() # N Hc/4
    x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs)
    y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs)
    freqs_cis = torch.cat([x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1) # N,Hc/4,2
    freqs_cis = freqs_cis.reshape(height*width, -1)
    return freqs_cis


def apply_rotary_emb(
        xq: torch.Tensor,
        xk: torch.Tensor,
        freqs_cis: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    freqs_cis = freqs_cis[None, :, None, :]
    # xq : B N H Hc
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # B N H Hc/2
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) # B, N, H, Hc
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)


class RAttention(nn.Module):
    def __init__(
            self,
            dim: int,
            num_heads: int = 8,
            qkv_bias: bool = False,
            qk_norm: bool = True,
            attn_drop: float = 0.,
            proj_drop: float = 0.,
            norm_layer: nn.Module = RMSNorm,
    ) -> None:
        super().__init__()
        assert dim % num_heads == 0, 'dim should be divisible by num_heads'

        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x: torch.Tensor, pos, mask) -> torch.Tensor:
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 1, 3, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # B N H Hc
        q = self.q_norm(q)
        k = self.k_norm(k)
        q, k = apply_rotary_emb(q, k, freqs_cis=pos)
        q = q.view(B, -1, self.num_heads, C // self.num_heads).transpose(1, 2)  # B, H, N, Hc
        k = k.view(B, -1, self.num_heads, C // self.num_heads).transpose(1, 2).contiguous()  # B, H, N, Hc
        v = v.view(B, -1, self.num_heads, C // self.num_heads).transpose(1, 2).contiguous()

        x = scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)

        x = x.transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x



class DiTBlock(nn.Module):
    def __init__(self, hidden_size, groups,  mlp_ratio=4.0, ):
        super().__init__()
        self.norm1 = RMSNorm(hidden_size, eps=1e-6)
        self.attn = RAttention(hidden_size, num_heads=groups, qkv_bias=False)
        self.norm2 = RMSNorm(hidden_size, eps=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        self.mlp = FeedForward(hidden_size, mlp_hidden_dim)
        self.adaLN_modulation = nn.Sequential(
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )

    def forward(self, x,  c, pos, mask=None):
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=-1)
        x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa), pos, mask=mask)
        x = x + gate_mlp * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class DiT(nn.Module):
    def __init__(
            self,
            in_channels=4,
            num_groups=12,
            hidden_size=1152,
            num_blocks=18,
            patch_size=2,
            num_classes=1000,
            learn_sigma=True,
            deep_supervision=0,
            weight_path=None,
            load_ema=False,
    ):
        super().__init__()
        self.deep_supervision = deep_supervision
        self.learn_sigma = learn_sigma
        self.in_channels = in_channels
        self.out_channels = in_channels
        self.hidden_size = hidden_size
        self.num_groups = num_groups
        self.num_blocks = num_blocks
        self.patch_size = patch_size
        self.x_embedder = Embed(in_channels*patch_size**2, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.y_embedder = LabelEmbedder(num_classes+1, hidden_size)

        self.final_layer = FinalLayer(hidden_size, in_channels*patch_size**2)

        self.weight_path = weight_path

        self.load_ema = load_ema
        self.blocks = nn.ModuleList([
            DiTBlock(self.hidden_size, self.num_groups) for _ in range(self.num_blocks)
        ])
        self.initialize_weights()
        self.precompute_pos = dict()

    def fetch_pos(self, height, width, device, dtype):
        if (height, width) in self.precompute_pos:
            return self.precompute_pos[(height, width)].to(device, dtype)
        else:
            pos = precompute_freqs_cis_2d(self.hidden_size // self.num_groups, height, width).to(device, dtype)
            self.precompute_pos[(height, width)] = pos
            return pos

    def initialize_weights(self):
        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        w = self.x_embedder.proj.weight.data
        nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
        nn.init.constant_(self.x_embedder.proj.bias, 0)

        # Initialize label embedding table:
        nn.init.normal_(self.y_embedder.embedding_table.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def forward(self, x, t, y, masks=None):
        if masks is None:
            masks = [None, ]*self.num_blocks
        if isinstance(masks, torch.Tensor):
            masks = masks.unbind(0)
        if isinstance(masks, (tuple, list)) and len(masks) < self.num_blocks:
            masks = masks + [None]*(self.num_blocks-len(masks))

        B, _, H, W = x.shape
        x = torch.nn.functional.unfold(x, kernel_size=self.patch_size, stride=self.patch_size).transpose(1, 2)
        x = self.x_embedder(x)
        pos = self.fetch_pos(H // self.patch_size, W // self.patch_size, x.device, x.dtype)
        B, L, C = x.shape
        t = self.t_embedder(t.view(-1)).view(B, -1, C)
        y = self.y_embedder(y).view(B, 1, C)
        condition = nn.functional.silu(t + y)
        for i, block in enumerate(self.blocks):
            x = block(x, condition, pos, masks[i])
        x = self.final_layer(x, condition)
        x = torch.nn.functional.fold(x.transpose(1, 2).contiguous(), (H, W), kernel_size=self.patch_size, stride=self.patch_size)
        return x