Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,481 Bytes
9e426da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import os.path
import random
import torch
from torch.utils.data import Dataset
class RandomNDataset(Dataset):
def __init__(self, latent_shape=(4, 64, 64), num_classes=1000, selected_classes:list=None, seeds=None, max_num_instances=50000, ):
self.selected_classes = selected_classes
if selected_classes is not None:
num_classes = len(selected_classes)
max_num_instances = 10*num_classes
self.num_classes = num_classes
self.seeds = seeds
if seeds is not None:
self.max_num_instances = len(seeds)*num_classes
self.num_seeds = len(seeds)
else:
self.num_seeds = (max_num_instances + num_classes - 1) // num_classes
self.max_num_instances = self.num_seeds*num_classes
self.latent_shape = latent_shape
def __getitem__(self, idx):
label = idx // self.num_seeds
if self.selected_classes:
label = self.selected_classes[label]
seed = random.randint(0, 1<<31) #idx % self.num_seeds
if self.seeds is not None:
seed = self.seeds[idx % self.num_seeds]
# cls_dir = os.path.join(self.root, f"{label}")
filename = f"{label}_{seed}.png",
generator = torch.Generator().manual_seed(seed)
latent = torch.randn(self.latent_shape, generator=generator, dtype=torch.float32)
return latent, label, filename
def __len__(self):
return self.max_num_instances |