# @package _group_ common: fp16: true log_format: json log_interval: 200 tensorboard_logdir: tblog seed: 1337 checkpoint: no_epoch_checkpoints: true best_checkpoint_metric: dec_accuracy maximize_best_checkpoint_metric: true distributed_training: ddp_backend: c10d find_unused_parameters: true distributed_world_size: 1 distributed_port: 29671 nprocs_per_node: 8 task: _name: speech2c_pretraining data: ??? fine_tuning: true label_dir: ??? normalize: false # must be consistent with pre-training labels: ["ltr"] single_target: true add_decoder: true pad_audio: true random_crop: false dataset: num_workers: 6 max_tokens: 3200000 skip_invalid_size_inputs_valid_test: true train_subset: train_100h valid_subset: dev_other criterion: _name: ctc_ce zero_infinity: true optimization: max_update: 80000 lr: [0.00004] sentence_avg: true update_freq: [1] optimizer: _name: adam adam_betas: (0.9,0.98) adam_eps: 1e-08 lr_scheduler: _name: tri_stage phase_ratio: [0.1, 0.4, 0.5] final_lr_scale: 0.05 model: _name: speech2c_ctc w2v_path: ??? apply_mask: true mask_prob: 0.65 mask_channel_prob: 0.5 mask_channel_length: 64 layerdrop: 0.1 decoder_layerdrop: 0.1 activation_dropout: 0.1 feature_grad_mult: 0.0 freeze_finetune_updates: 25000 hydra: job: config: override_dirname: kv_sep: '-' item_sep: '__' exclude_keys: - run - task.data - task.label_dir - model.w2v_path - dataset.train_subset - dataset.valid_subset - criterion.wer_kenlm_model - criterion.wer_lexicon run: dir: ??? sweep: dir: ??? subdir: ${hydra.job.config_name}__${hydra.job.override_dirname}