Spaces:
Runtime error
Runtime error
File size: 11,627 Bytes
62e9ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
# --------------------------------------------------------
# Pre-Training Transformer Decoder for End-to-End ASR Model with Unpaired Speech Data (https://arxiv.org/abs/2203.17113)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/Speech2C
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import logging
import copy
import contextlib
from typing import Dict, List, Optional, Tuple
import torch
from dataclasses import dataclass, field
from fairseq.data.dictionary import Dictionary
from fairseq.models import register_model
from fairseq.models.hubert import HubertConfig, HubertModel
from fairseq.models.transformer import Embedding
from torch import Tensor
from speech2c.tasks.speech2c_pretraining import (
Speech2cPretrainingConfig,
Speech2cPretrainingTask,
)
from speech2c.models.modules.transformer_decoder import TransformerDecoderScriptable
from speech2c.models.modules.transformer_encoder import TransformerEncoder
logger = logging.getLogger(__name__)
@dataclass
class Speech2cConfig(HubertConfig):
use_rel_pos_enc: bool = field(
default=False,
metadata={"help": "whether to use relative positional encoding"},
)
# decoder
decoder_layers: int = field(
default=6, metadata={"help": "num decoder layers in the transformer"}
)
decoder_embed_dim: int = field(
default=768, metadata={"help": "decoder embedding dimension"}
)
decoder_ffn_embed_dim: int = field(
default=3072, metadata={"help": "decoder embedding dimension for FFN"}
)
decoder_attention_heads: int = field(
default=12, metadata={"help": "num decoder attention heads"}
)
decoder_normalize_before: bool = field(
default=False,
metadata={"help": "apply layernorm before each decoder block"},
)
decoder_layerdrop: float = field(
default=0.0,
metadata={"help": "probability of dropping a tarnsformer layer"},
)
share_decoder_input_output_embed: bool = field(
default=False,
metadata={"help": "share decoder input and output embeddings"},
)
decoder_output_dim: int = field(
default=768, metadata={"help": "decoder output dimension"}
)
max_target_positions: int = field(
default=3000, metadata={"help": "max target position"}
)
no_scale_embedding: bool = field(
default=False,
metadata={"help": "not scale embedding"},
)
adaptive_input: bool = field(
default=False,
metadata={"help": "adaptive input"},
)
quant_noise_pq: int = field(
default=0, metadata={"help": "quant noise pq"}
)
decoder_learned_pos: bool = field(
default=False,
metadata={"help": "decoder learnable positional embedding"},
)
no_token_positional_embeddings: bool = field(
default=False,
metadata={"help": "no token positional embeddings"},
)
decoder_dict_size: int = field(
default=-1,
metadata={"help": "decoder dictionary dimension, only used for fine-tuning"},
)
# FP16 optimization
required_seq_len_multiple: int = field(
default=1,
metadata={
"help": "pad the input to encoder such that the sequence length is divisible by multiple"
},
)
crop_seq_to_multiple: int = field(
default=1,
metadata={
"help": "crop convolutional feature extractor output such that the sequence length is divisible by multiple"
},
)
@register_model("speech2c", dataclass=Speech2cConfig)
class Speech2cModel(HubertModel):
def __init__(
self,
cfg: Speech2cConfig,
task_cfg: Speech2cPretrainingConfig,
dictionaries: List[Dictionary],
) -> None:
super().__init__(cfg, task_cfg, dictionaries)
logger.info(f"Speech2cModel Config: {cfg}")
self.encoder = TransformerEncoder(cfg)
self.add_decoder = task_cfg.add_decoder
if task_cfg.add_decoder:
def build_embedding(dictionary, embed_dim):
num_embeddings = len(dictionary)
padding_idx = dictionary.pad()
return Embedding(num_embeddings, embed_dim, padding_idx)
# To make sure that the decoder dict size is the same as the fine-tuning tgt_dict size
cut_dictionary = copy.deepcopy(dictionaries[0])
if cfg.decoder_dict_size != -1:
cut_dictionary.symbols = cut_dictionary.symbols[:cfg.decoder_dict_size]
decoder_embed_tokens = build_embedding(
cut_dictionary, cfg.decoder_embed_dim
)
self.decoder = TransformerDecoderScriptable(cfg, cut_dictionary, decoder_embed_tokens)
@classmethod
def build_model(cls, cfg: Speech2cConfig, task: Speech2cPretrainingTask):
"""Build a new model instance."""
model = Speech2cModel(cfg, task.cfg, task.dictionaries)
return model
def get_normalized_probs(
self,
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]],
log_probs: bool,
sample: Optional[Dict[str, Tensor]] = None,
):
# net_output['encoder_out'] is a (B, T, D) tensor
lprobs = self.get_normalized_probs_scriptable(net_output, log_probs, sample)
lprobs.batch_first = True
return lprobs
def forward(
self,
source: torch.Tensor,
target_list: Optional[List[torch.Tensor]] = None,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = True,
features_only: bool = False,
output_layer: Optional[int] = None,
prev_output_tokens: Optional[torch.Tensor] = None,
) -> Dict[str, torch.Tensor]:
"""output layer is 1-based"""
features = self.forward_features(source)
if target_list is not None:
features, target_list = self.forward_targets(features, target_list)
features_pen = features.float().pow(2).mean()
features = features.transpose(1, 2)
features = self.layer_norm(features)
unmasked_features = features.clone()
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
features = self.dropout_input(features)
unmasked_features = self.dropout_features(unmasked_features)
if mask:
x, mask_indices = self.apply_mask(features, padding_mask, target_list)
else:
x = features
mask_indices = None
# feature: (B, T, D), float
# target: (B, T), long
# x: (B, T, D), float
# padding_mask: (B, T), bool
# mask_indices: (B, T), bool
x, _ = self.encoder(
x,
padding_mask=padding_mask,
layer=None if output_layer is None else output_layer - 1,
)
if features_only:
return {"x": x, "padding_mask": padding_mask, "features": features}
def compute_pred(proj_x, target, label_embs):
# compute logits for the i-th label set
y = torch.index_select(label_embs, 0, target.long())
negs = label_embs.unsqueeze(1).expand(-1, proj_x.size(0), -1)
if self.target_glu:
y = self.target_glu(y)
negs = self.target_glu(negs)
# proj_x: (S, D)
# y: (S, D)
# negs: (Neg, S, D)
return self.compute_nce(proj_x, y, negs)
label_embs_list = self.label_embs_concat.split(self.num_classes, 0)
if not self.skip_masked:
masked_indices = torch.logical_and(~padding_mask, mask_indices)
proj_x_m = self.final_proj(x[masked_indices])
if self.untie_final_proj:
proj_x_m_list = proj_x_m.chunk(len(target_list), dim=-1)
else:
proj_x_m_list = [proj_x_m for _ in range(len(target_list))]
logit_m_list = [
compute_pred(proj_x_m, t[masked_indices], label_embs_list[i])
for i, (proj_x_m, t) in enumerate(zip(proj_x_m_list, target_list))
]
else:
logit_m_list = [None for _ in target_list]
if not self.skip_nomask:
nomask_indices = torch.logical_and(~padding_mask, ~mask_indices)
proj_x_u = self.final_proj(x[nomask_indices])
if self.untie_final_proj:
proj_x_u_list = proj_x_u.chunk(len(target_list), dim=-1)
else:
proj_x_u_list = [proj_x_u for _ in range(len(target_list))]
logit_u_list = [
compute_pred(proj_x_u, t[nomask_indices], label_embs_list[i])
for i, (proj_x_u, t) in enumerate(zip(proj_x_u_list, target_list))
]
else:
logit_u_list = [None for _ in target_list]
result = {
"logit_m_list": logit_m_list,
"logit_u_list": logit_u_list,
"padding_mask": padding_mask,
"features_pen": features_pen,
}
if self.add_decoder:
encoder_out = {
"encoder_out": [x.transpose(0, 1)], # T x B x C
"encoder_padding_mask": [padding_mask], # B x T
}
assert prev_output_tokens is not None
decoder_out = self.decoder(
prev_output_tokens=prev_output_tokens, encoder_out=encoder_out
)
result['decoder_out'] = decoder_out
return result
def forward_torchscript(self, net_input: Dict[str, Tensor]):
"""A TorchScript-compatible version of forward.
Encoders which use additional arguments may want to override
this method for TorchScript compatibility.
"""
res = self.forward(
net_input["source"],
padding_mask=net_input["padding_mask"],
mask=False,
features_only=True
)
encoder_out = {
"encoder_out": [res["x"].transpose(0, 1)], # T x B x C
"encoder_padding_mask": [res["padding_mask"]], # B x T
}
return encoder_out
def extract_features(
self,
source: torch.Tensor,
padding_mask: Optional[torch.Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
prev_output_tokens: Optional[torch.Tensor] = None,
ft: bool = True,
) -> Tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad() if not ft else contextlib.ExitStack():
res = self.forward(
source,
padding_mask=padding_mask,
mask=mask,
features_only=True,
output_layer=output_layer,
)
feature = res["features"] if ret_conv else res["x"]
if self.add_decoder:
encoder_out = {
"encoder_out": [feature.transpose(0, 1)], # T x B x C
"encoder_padding_mask": [res["padding_mask"]], # B x T
}
assert prev_output_tokens is not None
decoder_out = self.decoder(
prev_output_tokens=prev_output_tokens,
encoder_out=encoder_out,
)
else:
decoder_out = None
return feature, res["padding_mask"], decoder_out
|