Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import os | |
import re | |
from datetime import datetime | |
from huggingface_hub import hf_hub_download | |
from huggingface_hub import HfApi, HfFolder | |
LEADERBOARD_FILE = "leaderboard.csv" | |
GROUND_TRUTH_FILE = "ground_truth.csv" | |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y") | |
# Ensure authentication and suppress warnings | |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
if not HF_TOKEN: | |
raise ValueError("HF_TOKEN environment variable is not set or invalid.") | |
def initialize_leaderboard_file(): | |
""" | |
Ensure the leaderboard file exists and has the correct headers. | |
""" | |
if not os.path.exists(LEADERBOARD_FILE): | |
pd.DataFrame(columns=[ | |
"Model Name", "Overall Accuracy", "Valid Accuracy", | |
"Correct Predictions", "Total Questions", "Timestamp" | |
]).to_csv(LEADERBOARD_FILE, index=False) | |
elif os.stat(LEADERBOARD_FILE).st_size == 0: | |
pd.DataFrame(columns=[ | |
"Model Name", "Overall Accuracy", "Valid Accuracy", | |
"Correct Predictions", "Total Questions", "Timestamp" | |
]).to_csv(LEADERBOARD_FILE, index=False) | |
def clean_answer(answer): | |
if pd.isna(answer): | |
return None | |
answer = str(answer) | |
clean = re.sub(r'[^A-Da-d]', '', answer) | |
return clean[0].upper() if clean else None | |
def update_leaderboard(results): | |
""" | |
Append new submission results to the leaderboard file and push updates to the Hugging Face repository. | |
""" | |
new_entry = { | |
"Model Name": results['model_name'], | |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2), | |
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2), | |
"Correct Predictions": results['correct_predictions'], | |
"Total Questions": results['total_questions'], | |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
} | |
try: | |
# Update the local leaderboard file | |
new_entry_df = pd.DataFrame([new_entry]) | |
file_exists = os.path.exists(LEADERBOARD_FILE) | |
new_entry_df.to_csv( | |
LEADERBOARD_FILE, | |
mode='a', # Append mode | |
index=False, | |
header=not file_exists # Write header only if the file is new | |
) | |
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}") | |
# Push the updated file to the Hugging Face repository using HTTP API | |
api = HfApi() | |
token = HfFolder.get_token() | |
api.upload_file( | |
path_or_fileobj=LEADERBOARD_FILE, | |
path_in_repo="leaderboard.csv", | |
repo_id="SondosMB/ss", # Your Space repository | |
repo_type="space", | |
token=token | |
) | |
print("Leaderboard changes pushed to Hugging Face repository.") | |
except Exception as e: | |
print(f"Error updating leaderboard file: {e}") | |
def load_leaderboard(): | |
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0: | |
return pd.DataFrame({ | |
"Model Name": [], | |
"Overall Accuracy": [], | |
"Valid Accuracy": [], | |
"Correct Predictions": [], | |
"Total Questions": [], | |
"Timestamp": [], | |
}) | |
return pd.read_csv(LEADERBOARD_FILE) | |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard): | |
try: | |
ground_truth_path = hf_hub_download( | |
repo_id="SondosMB/ground-truth-dataset", | |
filename="ground_truth.csv", | |
repo_type="dataset", | |
use_auth_token=True | |
) | |
ground_truth_df = pd.read_csv(ground_truth_path) | |
except FileNotFoundError: | |
return "Ground truth file not found in the dataset repository.", load_leaderboard() | |
except Exception as e: | |
return f"Error loading ground truth: {e}", load_leaderboard() | |
if not prediction_file: | |
return "Prediction file not uploaded.", load_leaderboard() | |
try: | |
predictions_df = pd.read_csv(prediction_file.name) | |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner') | |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer) | |
valid_predictions = merged_df.dropna(subset=['pred_answer']) | |
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum() | |
total_predictions = len(merged_df) | |
total_valid_predictions = len(valid_predictions) | |
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0 | |
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0 | |
results = { | |
'model_name': model_name if model_name else "Unknown Model", | |
'overall_accuracy': overall_accuracy, | |
'valid_accuracy': valid_accuracy, | |
'correct_predictions': correct_predictions, | |
'total_questions': total_predictions, | |
} | |
if add_to_leaderboard: | |
update_leaderboard(results) | |
return "Evaluation completed and added to leaderboard.", load_leaderboard() | |
else: | |
return "Evaluation completed but not added to leaderboard.", load_leaderboard() | |
except Exception as e: | |
return f"Error during evaluation: {str(e)}", load_leaderboard() | |
initialize_leaderboard_file() | |
# Function to set default mode | |
# Function to set default mode | |
css_tech_theme = """ | |
body { | |
background-color: #f4f6fa; | |
color: #333333; | |
font-family: 'Roboto', sans-serif; | |
line-height: 1.6; | |
} | |
a { | |
color: #6a1b9a; | |
font-weight: 500; | |
} | |
a:hover { | |
color: #8c52d3; | |
text-decoration: underline; | |
} | |
button { | |
background-color: #64b5f6; | |
color: #ffffff; | |
border: none; | |
border-radius: 6px; | |
padding: 10px 15px; | |
font-size: 14px; | |
cursor: pointer; | |
transition: background-color 0.3s ease; | |
} | |
button:hover { | |
background-color: #6a1b9a; | |
} | |
.input-row, .tab-content { | |
background-color: #f8f4fc; | |
border-radius: 10px; | |
padding: 20px; | |
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); | |
} | |
.tabs { | |
margin-bottom: 15px; | |
gap: 10px; | |
} | |
.tab-item { | |
background-color: #ece2f4; | |
border-radius: 6px; | |
padding: 10px; | |
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); | |
margin: 5px; | |
} | |
.dataframe { | |
color: #333333; | |
background-color: #ffffff; | |
border: 1px solid #e5eff2; | |
border-radius: 10px; | |
padding: 15px; | |
font-size: 14px; | |
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05); | |
} | |
.center-content { | |
display: flex; | |
flex-direction: column; | |
align-items: center; | |
justify-content: center; | |
text-align: center; | |
margin: 20px 0; | |
}""" | |
with gr.Blocks(css=css_tech_theme) as demo: | |
gr.Markdown(""" | |
<div class="center-content"> | |
<h1>π Mobile-MMLU Benchmark Competition</h1> | |
<h3>π Welcome to the Competition Overview</h3> | |
<img src="https://via.placeholder.com/150" alt="Competition Logo" style="margin: 20px 0;"> | |
<p>Welcome to the <strong>Mobile-MMLU Benchmark Competition</strong>. Here you can submit your predictions, view the leaderboard, and track your performance!</p> | |
<hr> | |
</div> | |
""",elem_id="center-content")) | |
with gr.Tabs(elem_id="tabs"): | |
with gr.TabItem("π Overview", elem_classes=["tab-item"]): | |
gr.Markdown(""" | |
## Overview | |
Welcome to the **Mobile-MMLU Benchmark Competition**! Evaluate mobile-compatible Large Language Models (LLMs) on **16,186 scenario-based and factual questions** across **80 fields**. | |
--- | |
### What is Mobile-MMLU? | |
Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy. | |
### How It Works | |
1. **Download the Dataset** | |
Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo). | |
2. **Generate Predictions** | |
Use your LLM to answer the dataset questions. Format your predictions as a CSV file. | |
3. **Submit Predictions** | |
Upload your predictions on this platform. | |
4. **Evaluation** | |
Submissions are scored on accuracy. | |
5. **Leaderboard** | |
View real-time rankings on the leaderboard. | |
--- | |
### Competition Tasks | |
Participants must: | |
- Optimize their models for **accuracy**. | |
- Answer diverse field questions effectively. | |
--- | |
### Get Started | |
1. Prepare your model using resources on our [GitHub page](https://github.com/your-github-repo). | |
2. Submit predictions in the required format. | |
3. Track your progress on the leaderboard. | |
### Contact Us | |
For support, email: [Insert Email Address] | |
--- | |
""") | |
with gr.TabItem("π€ Submission", elem_classes=["tab-item"]): | |
with gr.Row(): | |
file_input = gr.File(label="π Upload Prediction CSV", file_types=[".csv"], interactive=True) | |
model_name_input = gr.Textbox(label="ποΈ Model Name", placeholder="Enter your model name") | |
with gr.Row(): | |
overall_accuracy_display = gr.Number(label="π Overall Accuracy", interactive=False) | |
add_to_leaderboard_checkbox = gr.Checkbox(label="π Add to Leaderboard?", value=True) | |
eval_button = gr.Button("Evaluate", elem_id="evaluate-button") | |
eval_status = gr.Textbox(label="π’ Evaluation Status", interactive=False) | |
eval_button.click( | |
evaluate_predictions, | |
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox], | |
outputs=[eval_status, overall_accuracy_display], | |
) | |
with gr.TabItem("π Leaderboard", elem_classes=["tab-item"]): | |
leaderboard_table = gr.Dataframe( | |
value=load_leaderboard(), | |
label="Leaderboard", | |
interactive=False, | |
wrap=True, | |
) | |
refresh_button = gr.Button("Refresh Leaderboard") | |
refresh_button.click( | |
lambda: load_leaderboard(), | |
inputs=[], | |
outputs=[leaderboard_table], | |
) | |
gr.Markdown(f"**Last updated:** {LAST_UPDATED}") | |
demo.launch() | |