File size: 5,650 Bytes
9ba8fab 3769468 9ba8fab 3769468 6960dc6 2ab6a6b 9ba8fab 2ab6a6b 9ba8fab 2ab6a6b 3769468 d415750 3769468 2ab6a6b 3769468 d415750 3769468 d415750 3769468 d415750 2ab6a6b 3769468 d415750 3769468 2ab6a6b 3769468 d415750 3769468 d415750 3769468 d415750 3769468 d415750 3769468 9ba8fab 2ab6a6b 9ba8fab d415750 3769468 d415750 29c8f24 d415750 9ba8fab d415750 2ab6a6b 3769468 d415750 3769468 d415750 3769468 d415750 6960dc6 2ab6a6b d415750 2ab6a6b 9d80aed d415750 9ba8fab d415750 3769468 9ba8fab d415750 c726970 2ab6a6b d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab d415750 9ba8fab 2ab6a6b d415750 3769468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
references = {row["id"]: row["text"] for row in dataset}
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
def normalize_text(text):
"""
Normalize text for WER/CER calculation:
- Convert to lowercase
- Remove punctuation
- Replace multiple spaces with single space
- Strip leading/trailing spaces
"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
results = []
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
continue
reference_words = reference.split()
hypothesis_words = hypothesis.split()
try:
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
results.append({
"id": id_val,
"reference": reference,
"hypothesis": hypothesis,
"wer": sample_wer,
"cer": sample_cer
})
except Exception as e:
print(f"Error calculating metrics for ID {id_val}: {str(e)}")
if not results:
raise ValueError("No valid samples for WER/CER calculation")
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
return avg_wer, avg_cer, results
def process_submission(submitter_name, csv_file):
try:
df = pd.read_csv(csv_file)
if len(df) == 0:
return "Error: Uploaded CSV is empty.", None
if set(df.columns) != {"id", "text"}:
return f"Error: CSV must contain exactly 'id' and 'text' columns. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated()]["id"].unique()
return f"Error: Duplicate IDs found: {', '.join(map(str, dup_ids[:5]))}", None
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Error: Missing {len(missing_ids)} IDs in submission. First few missing: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Error: Found {len(extra_ids)} extra IDs not in reference dataset. First few extra: {', '.join(map(str, list(extra_ids)[:5]))}", None
try:
avg_wer, avg_cer, detailed_results = calculate_metrics(df)
print(f"Calculated metrics - WER: {avg_wer:.4f}, CER: {avg_cer:.4f}")
print(f"Processed {len(detailed_results)} valid samples")
if avg_wer < 0.000001: # I will come back to this
return "Error: WER calculation yielded suspicious results (near-zero). Please check your submission CSV.", None
except Exception as e:
return f"Error calculating metrics: {str(e)}", None
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, timestamp]],
columns=["submitter", "WER", "CER", "timestamp"]
)
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
leaderboard.to_csv(leaderboard_file, index=False)
return f"Submission processed successfully! WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", leaderboard
except Exception as e:
return f"Error processing submission: {str(e)}", None
with gr.Blocks(title="Bambara ASR Leaderboard") as demo:
gr.Markdown(
"""
# Bambara ASR Leaderboard
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions.
The 'id's must match those in the dataset.
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset).
- **WER**: Word Error Rate (lower is better).
- **CER**: Character Error Rate (lower is better).
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"])
submit_btn = gr.Button("Submit")
output_msg = gr.Textbox(label="Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Leaderboard",
value=pd.read_csv(leaderboard_file),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
print("Starting Bambara ASR Leaderboard app...")
if __name__ == "__main__":
demo.launch(share=True) |