import os
import time
from langchain_together import TogetherEmbeddings
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain.chains import RetrievalQA
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
st.markdown("""
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 0.2, 1])
with col2:
st.image("army.png", width=240)
st.markdown("""
""", unsafe_allow_html=True)
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def get_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
# بارگذاری PDF
pdf_loader = PyPDFLoader('test1.pdf')
# تنظیم embedding ها برای زبان فارسی
embeddings = TogetherEmbeddings(
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
)
# ساخت ایندکس با استفاده از PDF و embeddings
index = VectorstoreIndexCreator(embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)).from_loaders([pdf_loader])
# چاپ تعداد بخشها برای بررسی
st.write(f"تعداد بخشهای پردازششده: {len(index.vectorstore)}")
return index
# ----------------- بارگذاری دیتا -----------------
index = get_pdf_index()
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=index.vectorstore.as_retriever(),
input_key='question'
)
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# نمایش پیامها در چت
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# دریافت ورودی از کاربر
prompt = st.chat_input("چطور میتونم کمک کنم؟")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
# اجرای جستجو در ایندکس برای دریافت پاسخ
response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}')
answer = response.split("Helpful Answer:")[-1].strip()
if not answer:
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
thinking.empty()
full_response = ""
placeholder = st.empty()
# نمایش پاسخ به صورت تدریجی
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None