import os import time import streamlit as st from langchain.chat_models import ChatOpenAI from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.schema import Document from langchain.chains import RetrievalQA from langchain_core.retrievers import BaseRetriever from typing import List from pydantic import Field import numpy as np from sentence_transformers import SentenceTransformer import faiss # ----------------- تنظیمات صفحه ----------------- st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide") st.markdown(""" """, unsafe_allow_html=True) col1, col2, col3 = st.columns([1, 2, 1]) with col2: st.image("army.png", width=240) st.markdown("""

چت‌ بات توانا

دستیار هوشمند برای تصمیم‌گیری در میدان نبرد
""", unsafe_allow_html=True) # ----------------- لود PDF و ساخت ایندکس ----------------- @st.cache_resource def get_pdf_index(): with st.spinner('📄 در حال پردازش فایل PDF...'): loader = PyPDFLoader('test1.pdf') documents = loader.load() splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0) texts = [] for doc in documents: texts.extend(splitter.split_text(doc.page_content)) # مدل امبدینگ model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") # تولید امبدینگ‌ها embeddings = model.encode(texts, convert_to_numpy=True) # ساخت ایندکس Faiss index = faiss.IndexFlatL2(embeddings.shape[1]) index.add(embeddings) docs = [{"text": text} for text in texts] return docs, embeddings, index, model # ----------------- تعریف LLM ----------------- llm = ChatOpenAI( base_url="https://api.together.xyz/v1", api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979', model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free" ) # ----------------- تعریف SimpleRetriever ----------------- class SimpleRetriever(BaseRetriever): documents: List[dict] = Field(...) embeddings: np.ndarray = Field(...) index: faiss.Index model: SentenceTransformer def _get_relevant_documents(self, query: str) -> List[Document]: query_embedding = self.model.encode([query], convert_to_numpy=True) _, indices = self.index.search(query_embedding, 5) results = [] for i in indices[0]: results.append(Document(page_content=self.documents[i]['text'])) return results # ----------------- بارگذاری دیتا ----------------- documents, embeddings, index, model = get_pdf_index() retriever = SimpleRetriever( documents=documents, embeddings=embeddings, index=index, model=model ) # ----------------- ساخت Chain ----------------- qa_chain = RetrievalQA.from_chain_type( llm=llm, retriever=retriever, chain_type="stuff" ) # ----------------- چت استیت ----------------- if 'messages' not in st.session_state: st.session_state.messages = [] if 'pending_prompt' not in st.session_state: st.session_state.pending_prompt = None # ----------------- نمایش پیام‌های قبلی ----------------- for msg in st.session_state.messages: with st.chat_message(msg['role']): st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True) # ----------------- ورودی کاربر ----------------- prompt = st.chat_input("سوالی در مورد فایل بپرس...") if prompt: st.session_state.messages.append({'role': 'user', 'content': prompt}) st.session_state.pending_prompt = prompt st.rerun() # ----------------- پاسخ‌دهی مدل ----------------- if st.session_state.pending_prompt: with st.chat_message('ai'): thinking = st.empty() thinking.markdown("🤖 در حال فکر کردن...") try: response = qa_chain.run(st.session_state.pending_prompt) answer = response.strip() except Exception as e: answer = f"خطا در پاسخ‌دهی: {str(e)}" thinking.empty() full_response = "" placeholder = st.empty() for word in answer.split(): full_response += word + " " placeholder.markdown(full_response + "▌") time.sleep(0.03) placeholder.markdown(full_response) st.session_state.messages.append({'role': 'ai', 'content': full_response}) st.session_state.pending_prompt = None