import streamlit as st import time from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_together import TogetherEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.chains import RetrievalQA # --- 📄 ساخت امبدینگ‌ها با batch 50 تایی def batch_embed(texts, embeddings_model, batch_size=50): all_embeddings = [] for i in range(0, len(texts), batch_size): batch = texts[i:i+batch_size] embs = embeddings_model.embed_documents([doc.page_content for doc in batch]) all_embeddings.extend(embs) return all_embeddings @st.cache_resource def load_chunks_and_embeddings(): pdf_loader = PyPDFLoader('test1.pdf') pages = pdf_loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0) docs = text_splitter.split_documents(pages) embeddings = TogetherEmbeddings( api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979" ) vectorstore = None # هنوز نساختیم # پروگرس بار progress = st.progress(0, text="🔄 در حال پردازش چانک‌ها...") total = len(docs) batch_size = 50 for i in range(0, total, batch_size): batch_docs = docs[i:i+batch_size] embeddings_batch = embeddings.embed_documents([doc.page_content for doc in batch_docs]) if vectorstore is None: vectorstore = FAISS.from_embeddings(embeddings_batch, batch_docs) else: vectorstore.add_embeddings(embeddings_batch, batch_docs) progress.progress(min((i+batch_size)/total, 1.0)) progress.empty() return vectorstore # --- 🛠️ آماده کردن دیتابیس with st.spinner("📚 در حال بارگذاری فایل و ساخت امبدینگ‌ها... لطفا صبور باشید"): vectorstore = load_chunks_and_embeddings() # --- 🤖 آماده سازی مدل LLM llm = ChatOpenAI( base_url="https://api.together.xyz/v1", api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979', model="meta-llama/Llama-3-70B-Instruct-Turbo-Free" ) retriever = vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 10}) chain = RetrievalQA.from_chain_type( llm=llm, chain_type='stuff', retriever=retriever, input_key='question' ) # --- 💬 چت بات if 'messages' not in st.session_state: st.session_state.messages = [] if 'pending_prompt' not in st.session_state: st.session_state.pending_prompt = None st.title("📄🤖 دستیار PDF شما") # نمایش تاریخچه گفتگو for msg in st.session_state.messages: with st.chat_message(msg['role']): st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True) prompt = st.chat_input("سوالی از PDF داری؟") if prompt: st.session_state.messages.append({'role': 'user', 'content': prompt}) st.session_state.pending_prompt = prompt st.rerun() if st.session_state.pending_prompt: with st.chat_message('ai'): thinking = st.empty() thinking.markdown("🤖 در حال فکر کردن...") # اجرای جستجو در ایندکس response = chain.run(f'فقط به زبان فارسی جواب بده. سوال: {st.session_state.pending_prompt}') answer = response.split("Helpful Answer:")[-1].strip() if not answer: answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم." thinking.empty() full_response = "" placeholder = st.empty() for word in answer.split(): full_response += word + " " placeholder.markdown(full_response + "▌") time.sleep(0.03) placeholder.markdown(full_response) st.session_state.messages.append({'role': 'ai', 'content': full_response}) st.session_state.pending_prompt = None