import time import streamlit as st from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.base import Embeddings from langchain.vectorstores import FAISS from langchain.indexes import VectorstoreIndexCreator from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI from typing import List from together import Together from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import AutoTokenizer, AutoModel import torch from langchain_community.embeddings import HuggingFaceInstructEmbeddings import streamlit as st from PIL import Image st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide") # استایل st.markdown(""" """, unsafe_allow_html=True) # لوگو در وسط با columns col1, col2, col3 = st.columns([1, 1, 1]) with col2: try: image = Image.open("army.png") st.image(image, width=240) except FileNotFoundError: st.error("📁 فایل 'army.png' پیدا نشد. مطمئن شو کنار فایل اصلی Streamlit هست.") # تیتر st.markdown("""

چت‌ بات توانا

دستیار هوشمند برای تصمیم‌گیری در میدان نبرد
""", unsafe_allow_html=True) from transformers import AutoTokenizer, AutoModel class HuggingFaceEmbeddings(Embeddings): def __init__(self, model_name: str): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModel.from_pretrained(model_name) def embed_documents(self, texts: List[str]) -> List[List[float]]: embeddings = [] for text in texts: inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = self.model(**inputs) embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().tolist()) return embeddings def embed_query(self, text: str) -> List[float]: return self.embed_documents([text])[0] @st.cache_resource def get_pdf_text(pdf_docs='C:/Users/itel/Desktop/your work data.pdf'): pdf_reader = [PyPDFLoader(pdf_docs)] embeddings = HuggingFaceInstructEmbeddings(model_name="SajjadAyoubi/xlm-roberta-large-fa-qa") index = VectorstoreIndexCreator( embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)).from_loaders(pdf_reader) return index index = get_pdf_index() llm = ChatOpenAI( base_url="https://api.together.xyz/v1", api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979', model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free" ) chain = RetrievalQA.from_chain_type( llm=llm, chain_type='stuff', retriever=index.vectorstore.as_retriever(), input_key='question' ) if 'messages' not in st.session_state: st.session_state.messages = [] if 'pending_prompt' not in st.session_state: st.session_state.pending_prompt = None for msg in st.session_state.messages: with st.chat_message(msg['role']): st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True) prompt = st.chat_input("چطور می‌تونم کمک کنم؟") if prompt: st.session_state.messages.append({'role': 'user', 'content': prompt}) st.session_state.pending_prompt = prompt st.rerun() if st.session_state.pending_prompt: with st.chat_message('ai'): thinking = st.empty() thinking.markdown("🤖 در حال فکر کردن...") response = chain.run(f'لطفاً فقط به زبان فارسی پاسخ بده: {st.session_state.pending_prompt}') answer = response.split("Helpful Answer:")[-1].strip() if not answer: answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم." thinking.empty() full_response = "" placeholder = st.empty() for word in answer.split(): full_response += word + " " placeholder.markdown(full_response + "▌") time.sleep(0.03) placeholder.markdown(full_response) st.session_state.messages.append({'role': 'ai', 'content': full_response}) st.session_state.pending_prompt = None