Update app.py
Browse files
app.py
CHANGED
@@ -13,13 +13,16 @@ from langchain.chat_models import ChatOpenAI
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
14 |
model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
15 |
|
16 |
-
@st.cache
|
17 |
def get_embedding(text):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
|
24 |
def cosine_similarity(vec1, vec2):
|
25 |
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
14 |
model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
15 |
|
|
|
16 |
def get_embedding(text):
|
17 |
+
sub_chunks = split_text_to_chunks(text)
|
18 |
+
all_embeddings = []
|
19 |
+
for chunk in sub_chunks:
|
20 |
+
inputs = tokenizer(chunk, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(**inputs)
|
23 |
+
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
24 |
+
all_embeddings.append(embedding)
|
25 |
+
return np.mean(all_embeddings, axis=0)
|
26 |
|
27 |
def cosine_similarity(vec1, vec2):
|
28 |
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|