Update app.py
Browse files
app.py
CHANGED
@@ -1,346 +1,84 @@
|
|
1 |
-
import time
|
2 |
-
import streamlit as st
|
3 |
-
from langchain.document_loaders import PyPDFLoader
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain.embeddings.base import Embeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.indexes import VectorstoreIndexCreator
|
8 |
-
from langchain.chains import RetrievalQA
|
9 |
-
from langchain.chat_models import ChatOpenAI
|
10 |
-
from typing import List
|
11 |
-
from together import Together
|
12 |
-
import pandas as pd
|
13 |
-
import streamlit as st
|
14 |
-
from langchain.docstore.document import Document
|
15 |
-
import docx
|
16 |
import os
|
17 |
-
|
|
|
|
|
|
|
18 |
from hazm import *
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
st.markdown("""
|
25 |
-
<style>
|
26 |
-
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
|
27 |
-
|
28 |
-
html, body, [class*="css"] {
|
29 |
-
font-family: 'Vazirmatn', Tahoma, sans-serif;
|
30 |
-
direction: rtl;
|
31 |
-
text-align: right;
|
32 |
-
}
|
33 |
-
|
34 |
-
.stApp {
|
35 |
-
background: linear-gradient(to left, #4b5e40, #2e3b2e);
|
36 |
-
color: #ffffff;
|
37 |
-
}
|
38 |
-
|
39 |
-
/* استایل سایدبار */
|
40 |
-
[data-testid="stSidebar"] {
|
41 |
-
width: 260px !important;
|
42 |
-
background-color: #1a2b1e;
|
43 |
-
border: none !important; /* حذف حاشیه زرد */
|
44 |
-
padding-top: 20px;
|
45 |
-
}
|
46 |
-
|
47 |
-
.menu-item {
|
48 |
-
display: flex;
|
49 |
-
align-items: center;
|
50 |
-
gap: 12px;
|
51 |
-
padding: 12px 20px;
|
52 |
-
font-size: 16px;
|
53 |
-
color: #d4d4d4;
|
54 |
-
cursor: pointer;
|
55 |
-
transition: background-color 0.3s ease;
|
56 |
-
}
|
57 |
-
|
58 |
-
.menu-item:hover {
|
59 |
-
background-color: #2e3b2e;
|
60 |
-
color: #b8860b;
|
61 |
-
}
|
62 |
-
|
63 |
-
.menu-item img {
|
64 |
-
width: 24px;
|
65 |
-
height: 24px;
|
66 |
-
}
|
67 |
-
|
68 |
-
/* استایل دکمهها */
|
69 |
-
.stButton>button {
|
70 |
-
background-color: #b8860b !important;
|
71 |
-
color: #1a2b1e !important;
|
72 |
-
font-family: 'Vazirmatn', Tahoma;
|
73 |
-
font-weight: 700;
|
74 |
-
border-radius: 10px;
|
75 |
-
padding: 12px 24px;
|
76 |
-
border: none;
|
77 |
-
transition: all 0.3s ease;
|
78 |
-
font-size: 16px;
|
79 |
-
width: 100%;
|
80 |
-
margin: 10px 0;
|
81 |
-
}
|
82 |
-
|
83 |
-
.stButton>button:hover {
|
84 |
-
background-color: #8b6508 !important;
|
85 |
-
transform: translateY(-2px);
|
86 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.3);
|
87 |
-
}
|
88 |
-
|
89 |
-
/* استایل هدر */
|
90 |
-
.header-text {
|
91 |
-
text-align: center;
|
92 |
-
margin: 20px 0;
|
93 |
-
background-color: rgba(26, 43, 30, 0.9);
|
94 |
-
padding: 25px;
|
95 |
-
border-radius: 15px;
|
96 |
-
box-shadow: 0 6px 12px rgba(0,0,0,0.4);
|
97 |
-
}
|
98 |
-
|
99 |
-
.header-text h1 {
|
100 |
-
font-size: 42px;
|
101 |
-
color: #b8860b;
|
102 |
-
margin: 0;
|
103 |
-
font-weight: 700;
|
104 |
-
}
|
105 |
-
|
106 |
-
.subtitle {
|
107 |
-
font-size: 18px;
|
108 |
-
color: #d4d4d4;
|
109 |
-
margin-top: 10px;
|
110 |
-
}
|
111 |
-
|
112 |
-
/* استایل پیام چت */
|
113 |
-
.chat-message {
|
114 |
-
background-color: rgba(26, 43, 30, 0.95);
|
115 |
-
border: 2px solid #b8860b;
|
116 |
-
border-radius: 15px;
|
117 |
-
padding: 20px;
|
118 |
-
margin: 15px 0;
|
119 |
-
box-shadow: 0 6px 12px rgba(0,0,0,0.3);
|
120 |
-
animation: fadeIn 0.6s ease;
|
121 |
-
font-size: 18px;
|
122 |
-
color: #d4d4d4;
|
123 |
-
display: flex;
|
124 |
-
align-items: center;
|
125 |
-
gap: 15px;
|
126 |
-
}
|
127 |
-
|
128 |
-
@keyframes fadeIn {
|
129 |
-
from { opacity: 0; transform: translateY(10px); }
|
130 |
-
to { opacity: 1; transform: translateY(0); }
|
131 |
-
}
|
132 |
-
|
133 |
-
/* استایل ورودیها */
|
134 |
-
.stTextInput>div>input, .stTextArea textarea {
|
135 |
-
background-color: rgba(26, 43, 30, 0.95) !important;
|
136 |
-
border-radius: 10px !important;
|
137 |
-
border: 1px solid #b8860b !important;
|
138 |
-
padding: 12px !important;
|
139 |
-
font-family: 'Vazirmatn', Tahoma;
|
140 |
-
font-size: 16px;
|
141 |
-
color: #d4d4d4 !important;
|
142 |
-
}
|
143 |
-
|
144 |
-
img.small-logo {
|
145 |
-
width: 120px;
|
146 |
-
margin: 0 auto 20px;
|
147 |
-
display: block;
|
148 |
-
}
|
149 |
-
|
150 |
-
hr {
|
151 |
-
border: 1px solid #b8860b;
|
152 |
-
margin: 15px 0;
|
153 |
-
}
|
154 |
-
|
155 |
-
/* رفع مشکل نوار زرد */
|
156 |
-
[data-testid="stSidebar"] > div {
|
157 |
-
border: none !important;
|
158 |
-
}
|
159 |
-
</style>
|
160 |
-
""", unsafe_allow_html=True)
|
161 |
-
|
162 |
-
# ----------------- احراز هویت ساده -----------------
|
163 |
-
if "authenticated" not in st.session_state:
|
164 |
-
st.session_state.authenticated = False
|
165 |
-
|
166 |
-
if not st.session_state.authenticated:
|
167 |
-
st.markdown("<h3 style='text-align: center; color: #b8860b;'>ورود به رزمیار ارتش</h3>", unsafe_allow_html=True)
|
168 |
-
username = st.text_input("نام کاربری:", placeholder="شناسه نظامی خود را وارد کنید")
|
169 |
-
password = st.text_input("رمز عبور:", type="password", placeholder="رمز عبور نظامی")
|
170 |
-
if st.button("ورود"):
|
171 |
-
if username == "admin" and password == "123":
|
172 |
-
st.session_state.authenticated = True
|
173 |
-
st.rerun()
|
174 |
-
else:
|
175 |
-
st.error("نام کاربری یا رمز عبور اش��باه است.")
|
176 |
-
st.stop()
|
177 |
-
|
178 |
-
# ----------------- سایدبار -----------------
|
179 |
-
with st.sidebar:
|
180 |
-
st.image("log.png", use_container_width=True) # اصلاح use_column_width
|
181 |
-
|
182 |
-
menu_items = [
|
183 |
-
("گزارش عملیاتی", "https://cdn-icons-png.flaticon.com/512/3596/3596165.png"),
|
184 |
-
("تاریخچه ماموریتها", "https://cdn-icons-png.flaticon.com/512/709/709496.png"),
|
185 |
-
("تحلیل دادههای نظامی", "https://cdn-icons-png.flaticon.com/512/1828/1828932.png"),
|
186 |
-
("مدیریت منابع", "https://cdn-icons-png.flaticon.com/512/681/681494.png"),
|
187 |
-
("دستیار فرماندهی", "https://cdn-icons-png.flaticon.com/512/3601/3601646.png"),
|
188 |
-
("تنظیمات امنیتی", "https://cdn-icons-png.flaticon.com/512/2099/2099058.png"),
|
189 |
-
("پشتیبانی فنی", "https://cdn-icons-png.flaticon.com/512/597/597177.png"),
|
190 |
-
]
|
191 |
-
|
192 |
-
for idx, (text, icon) in enumerate(menu_items):
|
193 |
-
st.markdown(f"""
|
194 |
-
<div class="menu-item">
|
195 |
-
<img src="{icon}" />
|
196 |
-
{text}
|
197 |
-
</div>
|
198 |
-
""", unsafe_allow_html=True)
|
199 |
-
if idx in [1, 3, 5]:
|
200 |
-
st.markdown("<hr/>", unsafe_allow_html=True)
|
201 |
-
|
202 |
-
# ----------------- محتوای اصلی -----------------
|
203 |
-
st.markdown("""
|
204 |
-
<div class="header-text">
|
205 |
-
<h1>رزمیار ارتش</h1>
|
206 |
-
<div class="subtitle">دستیار هوشمندارتش</div>
|
207 |
-
</div>
|
208 |
-
""", unsafe_allow_html=True)
|
209 |
-
|
210 |
-
# پیام خوشآمدگویی
|
211 |
-
st.markdown(f"""
|
212 |
-
<div class="chat-message">
|
213 |
-
<span style="font-size: 24px;">🪖</span>
|
214 |
-
<span>به رزم یار ارتش خوش آمدید. </span>
|
215 |
-
</div>
|
216 |
-
""", unsafe_allow_html=True)
|
217 |
-
|
218 |
-
|
219 |
-
# ----------------- لود csv و ساخت ایندکس -----------------
|
220 |
-
normalizer = Normalizer()
|
221 |
-
|
222 |
-
# توکنایزر هضم
|
223 |
-
tokenizer = word_tokenize
|
224 |
-
|
225 |
-
# بارگذاری مدل WordEmbedding
|
226 |
-
word_embedding = WordEmbedding(model_type='fasttext')
|
227 |
-
WordEmbedding = word_embedding.load_model('word2vec.bin') # مدل از اینترنت دانلود میشود
|
228 |
-
|
229 |
-
class CustomEmbeddings(Embeddings):
|
230 |
-
def __init__(self, word_embedding: WordEmbedding):
|
231 |
-
self.word_embedding = word_embedding
|
232 |
-
|
233 |
-
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
234 |
-
embeddings = []
|
235 |
-
for text in texts:
|
236 |
-
# ایجاد امبدینگ برای هر کلمه در متن
|
237 |
-
embeddings.append([self.word_embedding.embed(word) for word in tokenizer(text)])
|
238 |
-
return embeddings
|
239 |
-
|
240 |
-
def embed_query(self, text: str) -> List[float]:
|
241 |
-
return self.embed_documents([text])[0]
|
242 |
-
|
243 |
@st.cache_resource
|
244 |
-
def
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
)
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
)
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
)
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
st.
|
318 |
-
|
319 |
-
prompt = st.chat_input("چطور میتونم کمک کنم؟")
|
320 |
-
|
321 |
-
if prompt:
|
322 |
-
st.session_state.messages.append({'role': 'user', 'content': prompt})
|
323 |
-
st.session_state.pending_prompt = prompt
|
324 |
-
st.rerun()
|
325 |
-
|
326 |
-
if st.session_state.pending_prompt:
|
327 |
-
with st.chat_message('ai'):
|
328 |
-
thinking = st.empty()
|
329 |
-
thinking.markdown("🤖 در حال فکر کردن...")
|
330 |
-
|
331 |
-
response = chain.run(f'پاسخ را فقط به زبان فارسی جواب بده به هیچ عنوان از زبان چینی در پاسخ استفاده نکن. سوال: {st.session_state.pending_prompt}')
|
332 |
-
answer = response.split("Helpful Answer:")[-1].strip() if "Helpful Answer:" in response else response.strip()
|
333 |
-
if not answer:
|
334 |
-
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
|
335 |
-
|
336 |
-
thinking.empty()
|
337 |
-
full_response = ""
|
338 |
-
placeholder = st.empty()
|
339 |
-
for word in answer.split():
|
340 |
-
full_response += word + " "
|
341 |
-
placeholder.markdown(full_response + "▌")
|
342 |
-
time.sleep(0.03)
|
343 |
-
|
344 |
-
placeholder.markdown(full_response)
|
345 |
-
st.session_state.messages.append({'role': 'ai', 'content': full_response})
|
346 |
-
st.session_state.pending_prompt = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import docx
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import streamlit as st
|
6 |
from hazm import *
|
7 |
+
from transformers import AutoTokenizer, AutoModel
|
8 |
|
9 |
+
# بارگذاری مدل
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
@st.cache_resource
|
11 |
+
def load_model():
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
13 |
+
model = AutoModel.from_pretrained("HooshvareLab/bert-fa-base-uncased")
|
14 |
+
return tokenizer, model
|
15 |
+
|
16 |
+
tokenizer, model = load_model()
|
17 |
+
|
18 |
+
# پردازش فایلهای Word و تبدیل به جملات
|
19 |
+
@st.cache_data
|
20 |
+
def load_text_chunks(folder_path):
|
21 |
+
normalizer = Normalizer()
|
22 |
+
sentence_tokenizer = SentenceTokenizer()
|
23 |
+
texts = []
|
24 |
+
|
25 |
+
for filename in os.listdir(folder_path):
|
26 |
+
if filename.endswith(".docx"):
|
27 |
+
full_path = os.path.join(folder_path, filename)
|
28 |
+
doc = docx.Document(full_path)
|
29 |
+
file_text = "\n".join([para.text for para in doc.paragraphs])
|
30 |
+
if file_text.strip():
|
31 |
+
texts.append(file_text)
|
32 |
+
|
33 |
+
all_sentences = []
|
34 |
+
for text in texts:
|
35 |
+
normalized = normalizer.normalize(text)
|
36 |
+
sentences = sentence_tokenizer.tokenize(normalized)
|
37 |
+
all_sentences.extend(sentences)
|
38 |
+
|
39 |
+
# تقسیم به بخشهای ۵ جملهای
|
40 |
+
chunks = []
|
41 |
+
for i in range(0, len(all_sentences), 5):
|
42 |
+
chunk = " ".join(all_sentences[i:i+5])
|
43 |
+
if chunk:
|
44 |
+
chunks.append(chunk)
|
45 |
+
return chunks
|
46 |
+
|
47 |
+
# محاسبه embedding با BERT
|
48 |
+
def get_embedding(text):
|
49 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
50 |
+
with torch.no_grad():
|
51 |
+
outputs = model(**inputs)
|
52 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
53 |
+
return embeddings.squeeze().numpy()
|
54 |
+
|
55 |
+
# شباهت کسینوسی
|
56 |
+
def cosine_similarity(vec1, vec2):
|
57 |
+
return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2))
|
58 |
+
|
59 |
+
# رابط کاربری استریملیت
|
60 |
+
st.title("🔎 یافتن نزدیکترین بخش ۵ جملهای به ورودی شما")
|
61 |
+
st.markdown("با استفاده از مدل `HooshvareLab/bert-fa-base-uncased`")
|
62 |
+
|
63 |
+
# مسیر پوشه فایلهای docx
|
64 |
+
folder_path = 'C:/Users/ici/Downloads/Telegram Desktop/45/46'
|
65 |
+
|
66 |
+
# بارگذاری و نمایش تعداد بخشها
|
67 |
+
chunks = load_text_chunks(folder_path)
|
68 |
+
st.success(f"{len(chunks)} بخش ۵ جملهای بارگذاری شد.")
|
69 |
+
|
70 |
+
# ورودی کاربر
|
71 |
+
user_input = st.text_area("لطفاً جمله یا متن خود را وارد کنید:")
|
72 |
+
|
73 |
+
if st.button("🔍 جستجو"):
|
74 |
+
if not user_input.strip():
|
75 |
+
st.warning("لطفاً یک جمله وارد کنید.")
|
76 |
+
else:
|
77 |
+
with st.spinner("در حال محاسبه شباهتها..."):
|
78 |
+
user_embedding = get_embedding(user_input)
|
79 |
+
similarities = [cosine_similarity(user_embedding, get_embedding(chunk)) for chunk in chunks]
|
80 |
+
most_similar_index = np.argmax(similarities)
|
81 |
+
result = chunks[most_similar_index]
|
82 |
+
|
83 |
+
st.subheader("📌 شبیهترین بخش ۵ جملهای:")
|
84 |
+
st.write(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|