|
|
|
import time |
|
import streamlit as st |
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings.base import Embeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.indexes import VectorstoreIndexCreator |
|
from langchain.chains import RetrievalQA |
|
from langchain.chat_models import ChatOpenAI |
|
from typing import List |
|
from together import Together |
|
|
|
|
|
st.set_page_config(page_title="چت بات ارتش", page_icon="🪖", layout="wide") |
|
|
|
st.markdown(""" |
|
<style> |
|
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap'); |
|
|
|
html, body, [class*="css"] { |
|
font-family: 'Vazirmatn', Tahoma, sans-serif; |
|
direction: rtl; |
|
text-align: right; |
|
} |
|
|
|
.stApp { |
|
background: url("./military_bg.jpeg") no-repeat center center fixed; |
|
background-size: cover; |
|
backdrop-filter: blur(2px); |
|
} |
|
|
|
.stChatMessage { |
|
background-color: rgba(255,255,255,0.8); |
|
border: 1px solid #4e8a3e; |
|
border-radius: 12px; |
|
padding: 16px; |
|
margin-bottom: 15px; |
|
box-shadow: 0 4px 10px rgba(0,0,0,0.2); |
|
animation: fadeIn 0.4s ease-in-out; |
|
} |
|
|
|
.stTextInput > div > input, .stTextArea textarea { |
|
background-color: rgba(255,255,255,0.9) !important; |
|
border-radius: 8px !important; |
|
direction: rtl; |
|
text-align: right; |
|
font-family: 'Vazirmatn', Tahoma; |
|
} |
|
|
|
.stButton>button { |
|
background-color: #4e8a3e !important; |
|
color: white !important; |
|
font-weight: bold; |
|
border-radius: 10px; |
|
padding: 8px 20px; |
|
transition: 0.3s; |
|
} |
|
|
|
.stButton>button:hover { |
|
background-color: #3c6d30 !important; |
|
} |
|
|
|
.header-text { |
|
text-align: center; |
|
margin-top: 20px; |
|
margin-bottom: 40px; |
|
background-color: rgba(255, 255, 255, 0.75); |
|
padding: 20px; |
|
border-radius: 20px; |
|
box-shadow: 0 4px 12px rgba(0,0,0,0.2); |
|
} |
|
|
|
.header-text h1 { |
|
font-size: 42px; |
|
color: #2c3e50; |
|
margin: 0; |
|
font-weight: bold; |
|
} |
|
|
|
.subtitle { |
|
font-size: 18px; |
|
color: #34495e; |
|
margin-top: 8px; |
|
} |
|
|
|
@keyframes fadeIn { |
|
from { opacity: 0; transform: translateY(10px); } |
|
to { opacity: 1; transform: translateY(0); } |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
col1, col2, col3 = st.columns([1, 1, 1]) |
|
with col2: |
|
st.image("army.png", width=240) |
|
|
|
st.markdown(""" |
|
<div class="header-text"> |
|
<h1>چت بات ارتش</h1> |
|
<div class="subtitle">دستیار هوشمند برای تصمیمگیری در میدان نبرد</div> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
class TogetherEmbeddings(Embeddings): |
|
def __init__(self, model_name: str, api_key: str): |
|
self.model_name = model_name |
|
self.client = Together(api_key=api_key) |
|
|
|
def embed_documents(self, texts: List[str]) -> List[List[float]]: |
|
response = self.client.embeddings.create(model=self.model_name, input=texts) |
|
return [item.embedding for item in response.data] |
|
|
|
def embed_query(self, text: str) -> List[float]: |
|
return self.embed_documents([text])[0] |
|
|
|
@st.cache_resource |
|
def get_pdf_index(): |
|
with st.spinner('📄 در حال پردازش فایل PDF...'): |
|
loader = [PyPDFLoader('test1.pdf')] |
|
embeddings = TogetherEmbeddings( |
|
model_name="togethercomputer/m2-bert-80M-8k-retrieval", |
|
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979" |
|
|
|
|
|
|
|
|
|
) |
|
return VectorstoreIndexCreator( |
|
embedding=embeddings, |
|
text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0) |
|
).from_loaders(loader) |
|
|
|
index = get_pdf_index() |
|
|
|
llm = ChatOpenAI( |
|
base_url="https://api.together.xyz/v1", |
|
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979', |
|
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free" |
|
) |
|
|
|
chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
chain_type='stuff', |
|
retriever=index.vectorstore.as_retriever(), |
|
input_key='question' |
|
) |
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
if 'pending_prompt' not in st.session_state: |
|
st.session_state.pending_prompt = None |
|
|
|
for msg in st.session_state.messages: |
|
with st.chat_message(msg['role']): |
|
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True) |
|
|
|
prompt = st.chat_input("چطور میتونم کمک کنم؟") |
|
|
|
if prompt: |
|
st.session_state.messages.append({'role': 'user', 'content': prompt}) |
|
st.session_state.pending_prompt = prompt |
|
st.rerun() |
|
|
|
if st.session_state.pending_prompt: |
|
with st.chat_message('ai'): |
|
thinking = st.empty() |
|
thinking.markdown("🤖 در حال فکر کردن...") |
|
|
|
response = chain.run(f'question:پاسخ را فقط به زبان فارسی جواب بده {st.session_state.pending_prompt}') |
|
answer = response.split("Helpful Answer:")[-1].strip() |
|
if not answer: |
|
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم." |
|
|
|
thinking.empty() |
|
full_response = "" |
|
placeholder = st.empty() |
|
for word in answer.split(): |
|
full_response += word + " " |
|
placeholder.markdown(full_response + "▌") |
|
time.sleep(0.03) |
|
|
|
placeholder.markdown(full_response) |
|
st.session_state.messages.append({'role': 'ai', 'content': full_response}) |
|
st.session_state.pending_prompt = None |
|
|