File size: 6,250 Bytes
9fe2e05 c9690b4 b1b19a5 b5be236 4b02dd0 6564690 60897a5 b457318 830cc95 c9690b4 60897a5 9fe2e05 c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 c888a66 9fe2e05 c888a66 60897a5 c888a66 7b803ee c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 c888a66 f8d2d3e c888a66 60897a5 c888a66 60897a5 9fe2e05 60897a5 c888a66 86f59d7 f8d2d3e c888a66 830cc95 c888a66 f8d2d3e b457318 c8eb0cc 6f50fa8 b5be236 9fe2e05 6f50fa8 9fe2e05 2194800 e554a90 4b02dd0 9fe2e05 c9690b4 7ab91d0 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 06aed9c c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModel
import torch
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
import streamlit as st
from PIL import Image
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
# استایل
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
html, body, [class*="css"] {
font-family: 'Vazirmatn', Tahoma, sans-serif;
direction: rtl;
text-align: right;
}
.stApp {
background: url("military_bg.jpeg") no-repeat center center fixed;
background-size: cover;
backdrop-filter: blur(2px);
}
.stChatMessage {
background-color: rgba(255,255,255,0.8);
border: 1px solid #4e8a3e;
border-radius: 12px;
padding: 16px;
margin-bottom: 15px;
box-shadow: 0 4px 10px rgba(0,0,0,0.2);
animation: fadeIn 0.4s ease-in-out;
}
.stTextInput > div > input, .stTextArea textarea {
background-color: rgba(255,255,255,0.9) !important;
border-radius: 8px !important;
direction: rtl;
text-align: right;
font-family: 'Vazirmatn', Tahoma;
}
.stButton>button {
background-color: #4e8a3e !important;
color: white !important;
font-weight: bold;
border-radius: 10px;
padding: 8px 20px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #3c6d30 !important;
}
.header-text {
text-align: center;
margin-top: 20px;
margin-bottom: 40px;
background-color: rgba(255, 255, 255, 0.75);
padding: 20px;
border-radius: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}
.header-text h1 {
font-size: 42px;
color: #2c3e50;
margin: 0;
font-weight: bold;
}
.subtitle {
font-size: 18px;
color: #34495e;
margin-top: 8px;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
</style>
""", unsafe_allow_html=True)
# لوگو در وسط با columns
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
try:
image = Image.open("army.png")
st.image(image, width=240)
except FileNotFoundError:
st.error("📁 فایل 'army.png' پیدا نشد. مطمئن شو کنار فایل اصلی Streamlit هست.")
# تیتر
st.markdown("""
<div class="header-text">
<h1>چت بات توانا</h1>
<div class="subtitle">دستیار هوشمند برای تصمیمگیری در میدان نبرد</div>
</div>
""", unsafe_allow_html=True)
from transformers import AutoTokenizer, AutoModel
class HuggingFaceEmbeddings(Embeddings):
def __init__(self, model_name: str):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
embeddings = []
for text in texts:
inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
with torch.no_grad():
outputs = self.model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().tolist())
return embeddings
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
@st.cache_resource
def get_pdf_index(pdf_docs="test1.pdf"):
loader = PyPDFLoader('test1.pdf')
embeddings = HuggingFaceInstructEmbeddings(model_name="SajjadAyoubi/xlm-roberta-large-fa-qa")
index = VectorstoreIndexCreator( embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)).from_loaders(pdf_reader)
return index
index = get_pdf_index()
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=index.vectorstore.as_retriever(),
input_key='question'
)
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
prompt = st.chat_input("چطور میتونم کمک کنم؟")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
response = chain.run(f'لطفاً فقط به زبان فارسی پاسخ بده: {st.session_state.pending_prompt}')
answer = response.split("Helpful Answer:")[-1].strip()
if not answer:
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|