File size: 6,250 Bytes
9fe2e05
 
c9690b4
 
 
 
 
 
 
 
 
b1b19a5
b5be236
 
4b02dd0
6564690
60897a5
b457318
 
 
830cc95
c9690b4
60897a5
 
9fe2e05
c888a66
60897a5
c888a66
 
 
60897a5
 
 
c888a66
 
60897a5
 
c888a66
 
9fe2e05
c888a66
 
 
 
60897a5
 
c888a66
 
7b803ee
 
c888a66
60897a5
 
c888a66
 
 
 
 
 
60897a5
 
c888a66
60897a5
 
c888a66
 
 
 
 
 
 
60897a5
 
c888a66
f8d2d3e
 
c888a66
60897a5
 
c888a66
 
 
60897a5
 
 
 
 
9fe2e05
 
 
60897a5
 
 
 
 
 
 
 
c888a66
86f59d7
f8d2d3e
c888a66
830cc95
c888a66
f8d2d3e
 
b457318
 
c8eb0cc
 
6f50fa8
 
b5be236
 
9fe2e05
 
6f50fa8
 
 
 
 
 
 
9fe2e05
 
 
 
 
2194800
e554a90
4b02dd0
 
 
9fe2e05
c9690b4
7ab91d0
 
 
 
9fe2e05
c9690b4
9fe2e05
 
 
 
 
 
 
 
 
 
 
 
 
c9690b4
 
 
9fe2e05
c9690b4
9fe2e05
 
 
 
 
 
 
 
c9690b4
 
9fe2e05
06aed9c
c9690b4
 
 
9fe2e05
c9690b4
9fe2e05
 
c9690b4
 
9fe2e05
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoModel
import torch
from langchain_community.embeddings import HuggingFaceInstructEmbeddings


import streamlit as st
from PIL import Image

st.set_page_config(page_title="چت‌ بات توانا", page_icon="🪖", layout="wide")

# استایل
st.markdown("""
    <style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
    html, body, [class*="css"] {
        font-family: 'Vazirmatn', Tahoma, sans-serif;
        direction: rtl;
        text-align: right;
    }
    .stApp {
        background: url("military_bg.jpeg") no-repeat center center fixed;
        background-size: cover;
        backdrop-filter: blur(2px);
    }
    .stChatMessage {
        background-color: rgba(255,255,255,0.8);
        border: 1px solid #4e8a3e;
        border-radius: 12px;
        padding: 16px;
        margin-bottom: 15px;
        box-shadow: 0 4px 10px rgba(0,0,0,0.2);
        animation: fadeIn 0.4s ease-in-out;
    }
    .stTextInput > div > input, .stTextArea textarea {
        background-color: rgba(255,255,255,0.9) !important;
        border-radius: 8px !important;
        direction: rtl;
        text-align: right;
        font-family: 'Vazirmatn', Tahoma;
    }
    .stButton>button {
        background-color: #4e8a3e !important;
        color: white !important;
        font-weight: bold;
        border-radius: 10px;
        padding: 8px 20px;
        transition: 0.3s;
    }
    .stButton>button:hover {
        background-color: #3c6d30 !important;
    }
    .header-text {
        text-align: center;
        margin-top: 20px;
        margin-bottom: 40px;
        background-color: rgba(255, 255, 255, 0.75);
        padding: 20px;
        border-radius: 20px;
        box-shadow: 0 4px 12px rgba(0,0,0,0.2);
    }
    .header-text h1 {
        font-size: 42px;
        color: #2c3e50;
        margin: 0;
        font-weight: bold;
    }
    .subtitle {
        font-size: 18px;
        color: #34495e;
        margin-top: 8px;
    }
    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }
    </style>
""", unsafe_allow_html=True)

# لوگو در وسط با columns
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
    try:
        image = Image.open("army.png")
        st.image(image, width=240)
    except FileNotFoundError:
        st.error("📁 فایل 'army.png' پیدا نشد. مطمئن شو کنار فایل اصلی Streamlit هست.")

# تیتر
st.markdown("""
    <div class="header-text">
        <h1>چت‌ بات توانا</h1>
        <div class="subtitle">دستیار هوشمند برای تصمیم‌گیری در میدان نبرد</div>
    </div>
""", unsafe_allow_html=True)


from transformers import AutoTokenizer, AutoModel  

class HuggingFaceEmbeddings(Embeddings):
    def __init__(self, model_name: str):
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModel.from_pretrained(model_name)

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        embeddings = []
        for text in texts:
            inputs = self.tokenizer(text, return_tensors="pt", truncation=True, padding=True)
            with torch.no_grad():
                outputs = self.model(**inputs)
            embeddings.append(outputs.last_hidden_state.mean(dim=1).squeeze().tolist())
        return embeddings

    def embed_query(self, text: str) -> List[float]:
        return self.embed_documents([text])[0]

@st.cache_resource
def get_pdf_index(pdf_docs="test1.pdf"):
  loader = PyPDFLoader('test1.pdf')
  embeddings = HuggingFaceInstructEmbeddings(model_name="SajjadAyoubi/xlm-roberta-large-fa-qa")
  index  = VectorstoreIndexCreator( embedding=embeddings, text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)).from_loaders(pdf_reader)
  return index
index = get_pdf_index()

llm = ChatOpenAI(
    base_url="https://api.together.xyz/v1",
    api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
    model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)

chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type='stuff',
    retriever=index.vectorstore.as_retriever(),
    input_key='question'
)

if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

prompt = st.chat_input("چطور می‌تونم کمک کنم؟")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن...")

        response = chain.run(f'لطفاً فقط به زبان فارسی پاسخ بده: {st.session_state.pending_prompt}')
        answer = response.split("Helpful Answer:")[-1].strip()
        if not answer:
            answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."

        thinking.empty()
        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None