File size: 7,031 Bytes
9fe2e05 9912747 9fe2e05 c9690b4 6564690 b877134 538588e 9923628 60897a5 e0ee9b0 c9690b4 60897a5 9fe2e05 c888a66 60897a5 c888a66 60897a5 e0ee9b0 c888a66 60897a5 c888a66 9fe2e05 c888a66 60897a5 c888a66 7b803ee c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 c888a66 f8d2d3e c888a66 60897a5 c888a66 60897a5 9fe2e05 60897a5 e0ee9b0 c888a66 f8d2d3e c888a66 e0ee9b0 c888a66 f8d2d3e b457318 e0ee9b0 9fe2e05 e0ee9b0 9fe2e05 9912747 9fe2e05 e0ee9b0 6cd7c63 e0ee9b0 d7b5058 6cd7c63 d7b5058 6cd7c63 d7b5058 6cd7c63 d7b5058 b877134 d7b5058 9912747 b877134 9912747 d7b5058 e0ee9b0 6cd7c63 e0ee9b0 b877134 6cd7c63 9fe2e05 c9690b4 7ab91d0 7008417 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 e0ee9b0 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import time
import tiktoken
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
# from langchain.embeddings import TogetherEmbeddings
from langchain.schema import Document as LangchainDocument
st.set_page_config(page_title="چت بات ارتش", page_icon="🪖", layout="wide")
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
html, body, [class*="css"] {
font-family: 'Vazirmatn', Tahoma, sans-serif;
direction: rtl;
text-align: right;
}
.stApp {
background: url("./military_bg.jpeg") no-repeat center center fixed;
background-size: cover;
backdrop-filter: blur(2px);
}
.stChatMessage {
background-color: rgba(255,255,255,0.8);
border: 1px solid #4e8a3e;
border-radius: 12px;
padding: 16px;
margin-bottom: 15px;
box-shadow: 0 4px 10px rgba(0,0,0,0.2);
animation: fadeIn 0.4s ease-in-out;
}
.stTextInput > div > input, .stTextArea textarea {
background-color: rgba(255,255,255,0.9) !important;
border-radius: 8px !important;
direction: rtl;
text-align: right;
font-family: 'Vazirmatn', Tahoma;
}
.stButton>button {
background-color: #4e8a3e !important;
color: white !important;
font-weight: bold;
border-radius: 10px;
padding: 8px 20px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #3c6d30 !important;
}
.header-text {
text-align: center;
margin-top: 20px;
margin-bottom: 40px;
background-color: rgba(255, 255, 255, 0.75);
padding: 20px;
border-radius: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}
.header-text h1 {
font-size: 42px;
color: #2c3e50;
margin: 0;
font-weight: bold;
}
.subtitle {
font-size: 18px;
color: #34495e;
margin-top: 8px;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
</style>
""", unsafe_allow_html=True)
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
st.image("army.png", width=240)
st.markdown("""
<div class="header-text">
<h1>چت بات ارتش</h1>
<div class="subtitle">دستیار هوشمند برای تصمیمگیری در میدان نبرد</div>
</div>
""", unsafe_allow_html=True)
class TogetherEmbeddings(Embeddings):
def __init__(self, model_name: str, api_key: str):
self.model_name = model_name
self.client = Together(api_key=api_key)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
response = self.client.embeddings.create(model=self.model_name, input=texts)
return [item.embedding for item in response.data]
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
def count_tokens(text, model_name="gpt-3.5-turbo"):
enc = tiktoken.encoding_for_model(model_name)
return len(enc.encode(text))
@st.cache_resource
def get_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = [PyPDFLoader('test1.pdf')]
pages = []
for l in loader:
pages.extend(l.load())
splitter_initial = RecursiveCharacterTextSplitter(
chunk_size=124,
chunk_overlap=25
)
small_chunks = []
for page in pages:
text = page.page_content
if len(text) > 124:
small_chunks.extend(splitter_initial.split_text(text))
else:
small_chunks.append(text)
final_chunks = []
max_tokens = 2000
for chunk in small_chunks:
token_count = count_tokens(chunk, model_name="gpt-3.5-turbo")
if token_count > max_tokens:
splitter_token_safe = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100
)
smaller_chunks = splitter_token_safe.split_text(chunk)
final_chunks.extend(smaller_chunks)
else:
final_chunks.append(chunk)
documents = [LangchainDocument(page_content=text) for text in final_chunks]
embeddings = TogetherEmbeddings(
model_name="togethercomputer/m2-bert-80M-32k-retrieval",
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
)
# اینجا دیگه Vectorstore مستقیم میسازیم با FAISS
vectordb = FAISS.from_documents(documents, embedding=embeddings)
return vectordb
index = get_pdf_index()
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8"
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=index.vectorstore.as_retriever(),
input_key='question'
)
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
prompt = st.chat_input("چطور میتونم کمک کنم؟")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
response = chain.run(f'question:پاسخ را فقط به زبان فارسی جواب بده {st.session_state.pending_prompt}')
answer = response.split("Helpful Answer:")[-1].strip()
if not answer:
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|