LuisMBA commited on
Commit
8bf4c29
·
verified ·
1 Parent(s): f844445

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -9,7 +9,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
  model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu") # CPU-friendly for Spaces
10
 
11
  # Text generation function
12
- def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9):
13
  inputs = tokenizer(prompt, return_tensors="pt")
14
  outputs = model.generate(
15
  **inputs,
@@ -28,8 +28,8 @@ global_chapters = ""
28
  # Generation functions
29
  def generate_synopsis(topic):
30
  global global_synopsis
31
- prompt = f"Write a brief synopsis for a story about {topic}: "
32
- global_synopsis = generate_text(prompt, max_length=100)
33
  return global_synopsis
34
 
35
  def generate_chapters():
@@ -37,7 +37,8 @@ def generate_chapters():
37
  if not global_synopsis:
38
  return "Please generate a synopsis first."
39
  prompt = f'''Based on this synopsis for a book: {global_synopsis}. Divide the story into 4 chapters with brief descriptions for each.
40
- Enumerate every chapter created followed by its description and make the first chapter sound like an introduction and the last may sound as the epilogue'''
 
41
  global_chapters = generate_text(prompt, max_length=2000)
42
  return global_chapters
43
 
@@ -50,7 +51,7 @@ def expand_chapter(chapter_number):
50
  return f"Select a number between 1 and {len(chapters)}."
51
  prompt = f'''Knowing this synopsis for a book: {global_synopsis}. Expand and describe Chapter {chapter_number}
52
  in more detail, the title and current brief description of this chapter is: {chapters[chapter_number - 1]}'''
53
- return generate_text(prompt, max_length=200)
54
 
55
  # Gradio interface
56
  with gr.Blocks() as demo:
 
9
  model = AutoModelForCausalLM.from_pretrained(model_name).to("cpu") # CPU-friendly for Spaces
10
 
11
  # Text generation function
12
+ def generate_text(prompt, max_length=500, temperature=0.7, top_p=0.9):
13
  inputs = tokenizer(prompt, return_tensors="pt")
14
  outputs = model.generate(
15
  **inputs,
 
28
  # Generation functions
29
  def generate_synopsis(topic):
30
  global global_synopsis
31
+ prompt = f"Write a brief synopsis for a story about {topic}: . The max number of characters must be 500"
32
+ global_synopsis = generate_text(prompt, max_length=500)
33
  return global_synopsis
34
 
35
  def generate_chapters():
 
37
  if not global_synopsis:
38
  return "Please generate a synopsis first."
39
  prompt = f'''Based on this synopsis for a book: {global_synopsis}. Divide the story into 4 chapters with brief descriptions for each.
40
+ Enumerate every chapter created followed by its description and make the first chapter sound like an introduction and the last may sound as the epilogue.
41
+ The max number of character for every pair title, description must be 500'''
42
  global_chapters = generate_text(prompt, max_length=2000)
43
  return global_chapters
44
 
 
51
  return f"Select a number between 1 and {len(chapters)}."
52
  prompt = f'''Knowing this synopsis for a book: {global_synopsis}. Expand and describe Chapter {chapter_number}
53
  in more detail, the title and current brief description of this chapter is: {chapters[chapter_number - 1]}'''
54
+ return generate_text(prompt, max_length=500)
55
 
56
  # Gradio interface
57
  with gr.Blocks() as demo: