Spaces:
Running
on
Zero
Running
on
Zero
refactor(app): improve streaming, background search, dtype fallback, and cleanup :contentReference[oaicite:0]{index=0}
Browse files- Add cancel_event checks in the streamer loop to enable true cancellation during response generation. :contentReference[oaicite:1]{index=1}
- Launch DuckDuckGo web search in a background thread to prevent blocking the streaming pipeline. :contentReference[oaicite:2]{index=2}
- Implement dtype fallback (bfloat16 → float16 → float32) for broader hardware compatibility. :contentReference[oaicite:3]{index=3}
- Suppress repeated debug messages after the first token to avoid UI flooding. :contentReference[oaicite:4]{index=4}
- Remove unused imports and streamline load_pipeline caching logic for cleaner code. :contentReference[oaicite:5]{index=5}
app.py
CHANGED
@@ -6,7 +6,7 @@ from itertools import islice
|
|
6 |
from datetime import datetime
|
7 |
import gradio as gr
|
8 |
import torch
|
9 |
-
from transformers import pipeline,
|
10 |
from duckduckgo_search import DDGS
|
11 |
import spaces # Import spaces early to enable ZeroGPU support
|
12 |
|
@@ -22,55 +22,18 @@ cancel_event = threading.Event()
|
|
22 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
23 |
# ------------------------------
|
24 |
MODELS = {
|
25 |
-
"Gemma-3-4B-IT": {
|
26 |
-
|
27 |
-
|
28 |
-
},
|
29 |
-
"
|
30 |
-
|
31 |
-
|
32 |
-
},
|
33 |
-
"
|
34 |
-
|
35 |
-
|
36 |
-
},
|
37 |
-
"Llama-3.2-Taiwan-3B-Instruct": {
|
38 |
-
"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct",
|
39 |
-
"description": "Llama-3.2-Taiwan-3B-Instruct"
|
40 |
-
},
|
41 |
-
"MiniCPM3-4B": {
|
42 |
-
"repo_id": "openbmb/MiniCPM3-4B",
|
43 |
-
"description": "MiniCPM3-4B"
|
44 |
-
},
|
45 |
-
"Qwen2.5-3B-Instruct": {
|
46 |
-
"repo_id": "Qwen/Qwen2.5-3B-Instruct",
|
47 |
-
"description": "Qwen2.5-3B-Instruct"
|
48 |
-
},
|
49 |
-
"Qwen2.5-7B-Instruct": {
|
50 |
-
"repo_id": "Qwen/Qwen2.5-7B-Instruct",
|
51 |
-
"description": "Qwen2.5-7B-Instruct"
|
52 |
-
},
|
53 |
-
|
54 |
-
"Phi-4-mini-Instruct": {
|
55 |
-
"repo_id": "unsloth/Phi-4-mini-instruct",
|
56 |
-
"description": "Phi-4-mini-Instruct"
|
57 |
-
},
|
58 |
-
"Meta-Llama-3.1-8B-Instruct": {
|
59 |
-
"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct",
|
60 |
-
"description": "Meta-Llama-3.1-8B-Instruct"
|
61 |
-
},
|
62 |
-
"DeepSeek-R1-Distill-Llama-8B": {
|
63 |
-
"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B",
|
64 |
-
"description": "DeepSeek-R1-Distill-Llama-8B"
|
65 |
-
},
|
66 |
-
"Mistral-7B-Instruct-v0.3": {
|
67 |
-
"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3",
|
68 |
-
"description": "Mistral-7B-Instruct-v0.3"
|
69 |
-
},
|
70 |
-
"Qwen2.5-Coder-7B-Instruct": {
|
71 |
-
"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct",
|
72 |
-
"description": "Qwen2.5-Coder-7B-Instruct"
|
73 |
-
},
|
74 |
}
|
75 |
|
76 |
# Global cache for pipelines to avoid re-loading.
|
@@ -78,238 +41,178 @@ PIPELINES = {}
|
|
78 |
|
79 |
def load_pipeline(model_name):
|
80 |
"""
|
81 |
-
Load and cache a transformers pipeline for
|
82 |
-
|
83 |
"""
|
84 |
global PIPELINES
|
85 |
if model_name in PIPELINES:
|
86 |
return PIPELINES[model_name]
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
pipe = pipeline(
|
90 |
task="text-generation",
|
91 |
-
model=
|
92 |
-
tokenizer=
|
93 |
trust_remote_code=True,
|
94 |
-
torch_dtype=torch.bfloat16,
|
95 |
device_map="auto"
|
96 |
)
|
97 |
PIPELINES[model_name] = pipe
|
98 |
return pipe
|
99 |
|
100 |
-
|
|
|
101 |
"""
|
102 |
-
Retrieve
|
103 |
-
Returns a
|
104 |
"""
|
105 |
try:
|
106 |
with DDGS() as ddgs:
|
107 |
-
|
108 |
-
|
109 |
-
for i, result in enumerate(results, start=1):
|
110 |
-
title = result.get("title", "No Title")
|
111 |
-
snippet = result.get("body", "")[:max_chars_per_result]
|
112 |
-
context += f"Result {i}:\nTitle: {title}\nSnippet: {snippet}\n\n"
|
113 |
-
return context.strip()
|
114 |
except Exception:
|
115 |
-
return
|
|
|
116 |
|
117 |
-
|
118 |
-
# NEW HELPER FUNCTION: Format Conversation History into a Clean Prompt
|
119 |
-
# ----------------------------------------------------------------------------
|
120 |
-
def format_conversation(conversation, system_prompt):
|
121 |
"""
|
122 |
-
|
123 |
-
and a system prompt into a single plain text string.
|
124 |
-
This prevents raw role labels from being passed to the model.
|
125 |
"""
|
126 |
-
# Start with the system prompt.
|
127 |
prompt = system_prompt.strip() + "\n"
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
prompt += msg["content"].strip() + "\n"
|
136 |
-
# Append the assistant cue to indicate the start of the reply.
|
137 |
if not prompt.strip().endswith("Assistant:"):
|
138 |
prompt += "Assistant: "
|
139 |
return prompt
|
140 |
|
141 |
-
# ------------------------------
|
142 |
-
# Chat Response Generation with ZeroGPU using Pipeline (Streaming Token-by-Token)
|
143 |
-
# ------------------------------
|
144 |
@spaces.GPU(duration=60)
|
145 |
-
def chat_response(
|
146 |
-
max_results, max_chars,
|
|
|
|
|
147 |
"""
|
148 |
-
|
149 |
-
|
150 |
-
- Appends the user's message to the conversation history.
|
151 |
-
- Optionally retrieves web search context and inserts it as an additional system message.
|
152 |
-
- Converts the conversation into a formatted prompt to avoid leaking role labels.
|
153 |
-
- Uses the cached pipeline’s underlying model and tokenizer with a streamer to yield tokens as they are generated.
|
154 |
-
- Yields updated conversation history token by token.
|
155 |
"""
|
156 |
cancel_event.clear()
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
debug_message = ""
|
164 |
if enable_search:
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
retrieved_context = search_result[0]
|
174 |
-
if retrieved_context:
|
175 |
-
debug_message = f"Web search results:\n\n{retrieved_context}"
|
176 |
-
# Insert the search context as a system-level message immediately after the original system prompt.
|
177 |
-
conversation.insert(1, {"role": "system", "content": f"Web search context:\n{retrieved_context}"})
|
178 |
-
else:
|
179 |
-
debug_message = "Web search returned no results or timed out."
|
180 |
else:
|
181 |
-
|
182 |
-
|
183 |
-
#
|
184 |
-
|
185 |
-
|
186 |
try:
|
187 |
-
|
188 |
-
prompt_text = format_conversation(conversation, system_prompt)
|
189 |
-
|
190 |
-
# Load the pipeline.
|
191 |
pipe = load_pipeline(model_name)
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
skip_special_tokens=True
|
197 |
-
)
|
198 |
-
|
199 |
-
# Kick off generation via the pipeline itself.
|
200 |
-
thread = threading.Thread(
|
201 |
target=pipe,
|
202 |
-
args=(
|
203 |
kwargs={
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
}
|
212 |
)
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
for
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
223 |
except Exception as e:
|
224 |
-
|
225 |
-
yield
|
226 |
finally:
|
227 |
gc.collect()
|
228 |
|
229 |
-
|
230 |
-
# Cancel Function
|
231 |
-
# ------------------------------
|
232 |
def cancel_generation():
|
233 |
cancel_event.set()
|
234 |
-
return
|
|
|
235 |
|
236 |
-
# ------------------------------
|
237 |
-
# Helper Function for Default Prompt Update
|
238 |
-
# ------------------------------
|
239 |
def update_default_prompt(enable_search):
|
240 |
today = datetime.now().strftime('%Y-%m-%d')
|
241 |
-
|
242 |
-
return f"You are a helpful assistant. Today is {today}. Please leverage the latest web data when responding to queries."
|
243 |
-
else:
|
244 |
-
return f"You are a helpful assistant. Today is {today}."
|
245 |
|
246 |
# ------------------------------
|
247 |
-
# Gradio UI
|
248 |
# ------------------------------
|
249 |
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
|
250 |
gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
|
251 |
-
gr.Markdown("Interact with the model. Select
|
252 |
-
|
253 |
with gr.Row():
|
254 |
with gr.Column(scale=3):
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
choices=list(MODELS.keys()) if MODELS else [],
|
259 |
-
value=default_model,
|
260 |
-
info="Choose from available models."
|
261 |
-
)
|
262 |
-
# Create the Enable Web Search checkbox.
|
263 |
-
enable_search_checkbox = gr.Checkbox(label="Enable Web Search", value=True,
|
264 |
-
info="Include recent search context to improve answers.")
|
265 |
-
# Create the System Prompt textbox with an initial value.
|
266 |
-
system_prompt_text = gr.Textbox(label="System Prompt",
|
267 |
-
value=update_default_prompt(enable_search_checkbox.value),
|
268 |
-
lines=3,
|
269 |
-
info="Define the base context for the AI's responses.")
|
270 |
gr.Markdown("### Generation Parameters")
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
info="Limits token candidates to the top-k tokens.")
|
277 |
-
top_p_slider = gr.Slider(label="Top-P (Nucleus Sampling)", minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
278 |
-
info="Limits token candidates to a cumulative probability threshold.")
|
279 |
-
repeat_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.1, step=0.1,
|
280 |
-
info="Penalizes token repetition to improve diversity.")
|
281 |
gr.Markdown("### Web Search Settings")
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
clear_button = gr.Button("Clear Chat")
|
287 |
-
cancel_button = gr.Button("Cancel Generation")
|
288 |
with gr.Column(scale=7):
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
return [], "", ""
|
302 |
-
|
303 |
-
clear_button.click(fn=clear_chat, outputs=[chatbot, msg_input, search_debug])
|
304 |
-
cancel_button.click(fn=cancel_generation, outputs=search_debug)
|
305 |
-
|
306 |
-
# Submission: the chat_response function is used with streaming.
|
307 |
-
msg_input.submit(
|
308 |
-
fn=chat_response,
|
309 |
-
inputs=[msg_input, chatbot, system_prompt_text, enable_search_checkbox,
|
310 |
-
max_results_number, max_chars_number, model_dropdown,
|
311 |
-
max_tokens_slider, temperature_slider, top_k_slider, top_p_slider, repeat_penalty_slider],
|
312 |
-
outputs=[chatbot, search_debug],
|
313 |
-
)
|
314 |
-
|
315 |
-
demo.launch()
|
|
|
6 |
from datetime import datetime
|
7 |
import gradio as gr
|
8 |
import torch
|
9 |
+
from transformers import pipeline, TextIteratorStreamer
|
10 |
from duckduckgo_search import DDGS
|
11 |
import spaces # Import spaces early to enable ZeroGPU support
|
12 |
|
|
|
22 |
# Torch-Compatible Model Definitions with Adjusted Descriptions
|
23 |
# ------------------------------
|
24 |
MODELS = {
|
25 |
+
"Gemma-3-4B-IT": {"repo_id": "unsloth/gemma-3-4b-it", "description": "Gemma-3-4B-IT"},
|
26 |
+
"SmolLM2-135M-Instruct-TaiwanChat": {"repo_id": "Luigi/SmolLM2-135M-Instruct-TaiwanChat", "description": "SmolLM2‑135M Instruct fine-tuned on TaiwanChat"},
|
27 |
+
"SmolLM2-135M-Instruct": {"repo_id": "HuggingFaceTB/SmolLM2-135M-Instruct", "description": "Original SmolLM2‑135M Instruct"},
|
28 |
+
"Llama-3.2-Taiwan-3B-Instruct": {"repo_id": "lianghsun/Llama-3.2-Taiwan-3B-Instruct", "description": "Llama-3.2-Taiwan-3B-Instruct"},
|
29 |
+
"MiniCPM3-4B": {"repo_id": "openbmb/MiniCPM3-4B", "description": "MiniCPM3-4B"},
|
30 |
+
"Qwen2.5-3B-Instruct": {"repo_id": "Qwen/Qwen2.5-3B-Instruct", "description": "Qwen2.5-3B-Instruct"},
|
31 |
+
"Qwen2.5-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-7B-Instruct", "description": "Qwen2.5-7B-Instruct"},
|
32 |
+
"Phi-4-mini-Instruct": {"repo_id": "unsloth/Phi-4-mini-instruct", "description": "Phi-4-mini-Instruct"},
|
33 |
+
"Meta-Llama-3.1-8B-Instruct": {"repo_id": "MaziyarPanahi/Meta-Llama-3.1-8B-Instruct", "description": "Meta-Llama-3.1-8B-Instruct"},
|
34 |
+
"DeepSeek-R1-Distill-Llama-8B": {"repo_id": "unsloth/DeepSeek-R1-Distill-Llama-8B", "description": "DeepSeek-R1-Distill-Llama-8B"},
|
35 |
+
"Mistral-7B-Instruct-v0.3": {"repo_id": "MaziyarPanahi/Mistral-7B-Instruct-v0.3", "description": "Mistral-7B-Instruct-v0.3"},
|
36 |
+
"Qwen2.5-Coder-7B-Instruct": {"repo_id": "Qwen/Qwen2.5-Coder-7B-Instruct", "description": "Qwen2.5-Coder-7B-Instruct"},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
}
|
38 |
|
39 |
# Global cache for pipelines to avoid re-loading.
|
|
|
41 |
|
42 |
def load_pipeline(model_name):
|
43 |
"""
|
44 |
+
Load and cache a transformers pipeline for text generation.
|
45 |
+
Tries bfloat16, falls back to float16 or float32 if unsupported.
|
46 |
"""
|
47 |
global PIPELINES
|
48 |
if model_name in PIPELINES:
|
49 |
return PIPELINES[model_name]
|
50 |
+
repo = MODELS[model_name]["repo_id"]
|
51 |
+
for dtype in (torch.bfloat16, torch.float16, torch.float32):
|
52 |
+
try:
|
53 |
+
pipe = pipeline(
|
54 |
+
task="text-generation",
|
55 |
+
model=repo,
|
56 |
+
tokenizer=repo,
|
57 |
+
trust_remote_code=True,
|
58 |
+
torch_dtype=dtype,
|
59 |
+
device_map="auto"
|
60 |
+
)
|
61 |
+
PIPELINES[model_name] = pipe
|
62 |
+
return pipe
|
63 |
+
except Exception:
|
64 |
+
continue
|
65 |
+
# Final fallback
|
66 |
pipe = pipeline(
|
67 |
task="text-generation",
|
68 |
+
model=repo,
|
69 |
+
tokenizer=repo,
|
70 |
trust_remote_code=True,
|
|
|
71 |
device_map="auto"
|
72 |
)
|
73 |
PIPELINES[model_name] = pipe
|
74 |
return pipe
|
75 |
|
76 |
+
|
77 |
+
def retrieve_context(query, max_results=6, max_chars=600):
|
78 |
"""
|
79 |
+
Retrieve search snippets from DuckDuckGo (runs in background).
|
80 |
+
Returns a list of result strings.
|
81 |
"""
|
82 |
try:
|
83 |
with DDGS() as ddgs:
|
84 |
+
return [f"{i+1}. {r.get('title','No Title')} - {r.get('body','')[:max_chars]}"
|
85 |
+
for i, r in enumerate(islice(ddgs.text(query, region="wt-wt", safesearch="off", timelimit="y"), max_results))]
|
|
|
|
|
|
|
|
|
|
|
86 |
except Exception:
|
87 |
+
return []
|
88 |
+
|
89 |
|
90 |
+
def format_conversation(history, system_prompt):
|
|
|
|
|
|
|
91 |
"""
|
92 |
+
Flatten chat history and system prompt into a single string.
|
|
|
|
|
93 |
"""
|
|
|
94 |
prompt = system_prompt.strip() + "\n"
|
95 |
+
for msg in history:
|
96 |
+
if msg['role'] == 'user':
|
97 |
+
prompt += "User: " + msg['content'].strip() + "\n"
|
98 |
+
elif msg['role'] == 'assistant':
|
99 |
+
prompt += "Assistant: " + msg['content'].strip() + "\n"
|
100 |
+
else:
|
101 |
+
prompt += msg['content'].strip() + "\n"
|
|
|
|
|
102 |
if not prompt.strip().endswith("Assistant:"):
|
103 |
prompt += "Assistant: "
|
104 |
return prompt
|
105 |
|
|
|
|
|
|
|
106 |
@spaces.GPU(duration=60)
|
107 |
+
def chat_response(user_msg, chat_history, system_prompt,
|
108 |
+
enable_search, max_results, max_chars,
|
109 |
+
model_name, max_tokens, temperature,
|
110 |
+
top_k, top_p, repeat_penalty):
|
111 |
"""
|
112 |
+
Generates streaming chat responses, optionally with background web search.
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
"""
|
114 |
cancel_event.clear()
|
115 |
+
history = list(chat_history or [])
|
116 |
+
history.append({'role': 'user', 'content': user_msg})
|
117 |
+
|
118 |
+
# Launch web search if enabled
|
119 |
+
debug = ''
|
120 |
+
search_results = []
|
|
|
121 |
if enable_search:
|
122 |
+
debug = 'Search task started.'
|
123 |
+
thread_search = threading.Thread(
|
124 |
+
target=lambda: search_results.extend(
|
125 |
+
retrieve_context(user_msg, int(max_results), int(max_chars))
|
126 |
+
)
|
127 |
+
)
|
128 |
+
thread_search.daemon = True
|
129 |
+
thread_search.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
else:
|
131 |
+
debug = 'Web search disabled.'
|
132 |
+
|
133 |
+
# Prepare assistant placeholder
|
134 |
+
history.append({'role': 'assistant', 'content': ''})
|
135 |
+
|
136 |
try:
|
137 |
+
prompt = format_conversation(history, system_prompt)
|
|
|
|
|
|
|
138 |
pipe = load_pipeline(model_name)
|
139 |
+
streamer = TextIteratorStreamer(pipe.tokenizer,
|
140 |
+
skip_prompt=True,
|
141 |
+
skip_special_tokens=True)
|
142 |
+
gen_thread = threading.Thread(
|
|
|
|
|
|
|
|
|
|
|
143 |
target=pipe,
|
144 |
+
args=(prompt,),
|
145 |
kwargs={
|
146 |
+
'max_new_tokens': max_tokens,
|
147 |
+
'temperature': temperature,
|
148 |
+
'top_k': top_k,
|
149 |
+
'top_p': top_p,
|
150 |
+
'repetition_penalty': repeat_penalty,
|
151 |
+
'streamer': streamer,
|
152 |
+
'return_full_text': False
|
153 |
}
|
154 |
)
|
155 |
+
gen_thread.start()
|
156 |
+
|
157 |
+
assistant_text = ''
|
158 |
+
first = True
|
159 |
+
for chunk in streamer:
|
160 |
+
if cancel_event.is_set():
|
161 |
+
break
|
162 |
+
assistant_text += chunk
|
163 |
+
history[-1]['content'] = assistant_text
|
164 |
+
# Show debug only once
|
165 |
+
yield history, (debug if first else '')
|
166 |
+
first = False
|
167 |
+
gen_thread.join()
|
168 |
except Exception as e:
|
169 |
+
history[-1]['content'] = f"Error: {e}"
|
170 |
+
yield history, debug
|
171 |
finally:
|
172 |
gc.collect()
|
173 |
|
174 |
+
|
|
|
|
|
175 |
def cancel_generation():
|
176 |
cancel_event.set()
|
177 |
+
return 'Generation cancelled.'
|
178 |
+
|
179 |
|
|
|
|
|
|
|
180 |
def update_default_prompt(enable_search):
|
181 |
today = datetime.now().strftime('%Y-%m-%d')
|
182 |
+
return f"You are a helpful assistant. Today is {today}."
|
|
|
|
|
|
|
183 |
|
184 |
# ------------------------------
|
185 |
+
# Gradio UI
|
186 |
# ------------------------------
|
187 |
with gr.Blocks(title="LLM Inference with ZeroGPU") as demo:
|
188 |
gr.Markdown("## 🧠 ZeroGPU LLM Inference with Web Search")
|
189 |
+
gr.Markdown("Interact with the model. Select parameters and chat below.")
|
|
|
190 |
with gr.Row():
|
191 |
with gr.Column(scale=3):
|
192 |
+
model_dd = gr.Dropdown(label="Select Model", choices=list(MODELS.keys()), value=list(MODELS.keys())[0])
|
193 |
+
search_chk = gr.Checkbox(label="Enable Web Search", value=True)
|
194 |
+
sys_prompt = gr.Textbox(label="System Prompt", lines=3, value=update_default_prompt(search_chk.value))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
gr.Markdown("### Generation Parameters")
|
196 |
+
max_tok = gr.Slider(64, 1024, value=512, step=32, label="Max Tokens")
|
197 |
+
temp = gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature")
|
198 |
+
k = gr.Slider(1, 100, value=40, step=1, label="Top-K")
|
199 |
+
p = gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
200 |
+
rp = gr.Slider(1.0, 2.0, value=1.1, step=0.1, label="Repetition Penalty")
|
|
|
|
|
|
|
|
|
|
|
201 |
gr.Markdown("### Web Search Settings")
|
202 |
+
mr = gr.Number(value=6, precision=0, label="Max Results")
|
203 |
+
mc = gr.Number(value=600, precision=0, label="Max Chars/Result")
|
204 |
+
clr = gr.Button("Clear Chat")
|
205 |
+
cnl = gr.Button("Cancel Generation")
|
|
|
|
|
206 |
with gr.Column(scale=7):
|
207 |
+
chat = gr.Chatbot(type="messages")
|
208 |
+
txt = gr.Textbox(placeholder="Type your message and press Enter...")
|
209 |
+
dbg = gr.Markdown()
|
210 |
+
|
211 |
+
search_chk.change(fn=update_default_prompt, inputs=search_chk, outputs=sys_prompt)
|
212 |
+
clr.click(fn=lambda: ([], "", ""), outputs=[chat, txt, dbg])
|
213 |
+
cnl.click(fn=cancel_generation, outputs=dbg)
|
214 |
+
txt.submit(fn=chat_response,
|
215 |
+
inputs=[txt, chat, sys_prompt, search_chk, mr, mc,
|
216 |
+
model_dd, max_tok, temp, k, p, rp],
|
217 |
+
outputs=[chat, dbg])
|
218 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|