import spaces # Import spaces immediately for HF ZeroGPU support. import os import cv2 import torch import gradio as gr import numpy as np import matplotlib.pyplot as plt from io import BytesIO from PIL import Image from transformers import AutoFeatureExtractor, AutoModelForVideoClassification # Specify the model checkpoint for TimeSformer. MODEL_NAME = "microsoft/timesformer-base-finetuned-k400" def extract_frames(video_path, num_frames=16, target_size=(224, 224)): """ Extract up to `num_frames` uniformly-sampled frames from the video. If the video has fewer frames, all frames are returned. """ cap = cv2.VideoCapture(video_path) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frames = [] if total_frames <= 0: cap.release() return frames indices = np.linspace(0, total_frames - 1, num_frames, dtype=int) current_frame = 0 while True: ret, frame = cap.read() if not ret: break if current_frame in indices: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = cv2.resize(frame, target_size) frames.append(Image.fromarray(frame)) current_frame += 1 cap.release() return frames @spaces.GPU def classify_video(video_path): """ Loads the TimeSformer model and feature extractor inside the GPU context, extracts frames from the video, runs inference, and returns: 1. A text string of the top 5 predicted action labels with their class IDs and probabilities. 2. A bar chart image showing the distribution over the top predictions. """ # Load the feature extractor and model inside the GPU context. feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME) model = AutoModelForVideoClassification.from_pretrained(MODEL_NAME) model.eval() # Determine the device. device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Extract frames from the video. frames = extract_frames(video_path, num_frames=16, target_size=(224, 224)) if len(frames) == 0: return "No frames extracted from video.", None # Preprocess the frames. inputs = feature_extractor(frames, return_tensors="pt") inputs = {key: val.to(device) for key, val in inputs.items()} # Run inference. with torch.no_grad(): outputs = model(**inputs) # Get logits and compute probabilities. logits = outputs.logits # shape: [batch_size, num_classes] with batch_size=1. probs = torch.nn.functional.softmax(logits, dim=-1)[0] # Get the top 5 predictions. top_probs, top_indices = torch.topk(probs, k=5) top_probs = top_probs.cpu().numpy() top_indices = top_indices.cpu().numpy() # Retrieve the label mapping from model config. id2label = model.config.id2label if hasattr(model.config, "id2label") else {} # Prepare textual results showing both ID and label. results = [] x_labels = [] for idx, prob in zip(top_indices, top_probs): label = id2label.get(str(idx), f"Class {idx}") results.append(f"ID {idx} - {label}: {prob:.3f}") x_labels.append(f"ID {idx}\n{label}") results_text = "\n".join(results) # Create a bar chart for the distribution. fig, ax = plt.subplots(figsize=(8, 4)) ax.bar(x_labels, top_probs, color="skyblue") ax.set_ylabel("Probability") ax.set_title("Top 5 Prediction Distribution") plt.xticks(rotation=45, ha="right") plt.tight_layout() buf = BytesIO() plt.savefig(buf, format="png") buf.seek(0) plt.close(fig) return results_text, buf def process_video(video_file): if video_file is None: return "No video provided.", None result_text, plot_img = classify_video(video_file) return result_text, plot_img # Gradio interface definition. demo = gr.Interface( fn=process_video, inputs=gr.Video(source="upload", label="Upload Video Clip"), outputs=[ gr.Textbox(label="Predicted Actions"), gr.Image(label="Prediction Distribution") ], title="Video Human Detection Demo using TimeSformer", description=( "Upload a video clip to see the top predicted human action labels using the TimeSformer model " "(fine-tuned on Kinetics-400). The output shows each prediction along with its class ID and probability, " "and a bar chart displays the distribution of the top 5 predictions." ) ) if __name__ == "__main__": demo.launch()