Luigi's picture
show classs names
32fe845
raw
history blame contribute delete
5.83 kB
import spaces # Import spaces immediately for HF ZeroGPU support.
import os
import cv2
import torch
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import csv
from transformers import AutoFeatureExtractor, AutoModelForVideoClassification
# Specify the model checkpoint for TimeSformer.
MODEL_NAME = "facebook/timesformer-base-finetuned-k400"
def load_kinetics_labels(csv_path="kinetics-400-class-names.csv"):
"""
Loads the Kinetics-400 labels from a CSV file.
Expected CSV format:
id,name
0,abseiling
1,air drumming
...
399,zumba
Returns a dictionary mapping string IDs to label names.
"""
labels = {}
try:
with open(csv_path, "r", encoding="utf-8") as f:
reader = csv.reader(f)
# Skip header if present
header = next(reader)
if "id" not in header[0].lower():
f.seek(0)
reader = csv.reader(f)
for row in reader:
if len(row) >= 2:
labels[row[0].strip()] = row[1].strip()
except Exception as e:
print("Error reading CSV mapping:", e)
return labels
def extract_frames(video_path, num_frames=16, target_size=(224, 224)):
"""
Extract up to `num_frames` uniformly-sampled frames from the video.
If the video has fewer frames, all frames are returned.
"""
cap = cv2.VideoCapture(video_path)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frames = []
if total_frames <= 0:
cap.release()
return frames
indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
current_frame = 0
while True:
ret, frame = cap.read()
if not ret:
break
if current_frame in indices:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame, target_size)
frames.append(Image.fromarray(frame))
current_frame += 1
cap.release()
return frames
@spaces.GPU
def classify_video(video_path):
"""
Loads the TimeSformer model and feature extractor inside the GPU context,
extracts frames from the video, runs inference, and returns:
1. A text string of the top 5 predicted actions (with class ID and descriptive label)
along with their probabilities.
2. A bar chart (as a PIL Image) showing the prediction distribution.
"""
# Load the feature extractor and model.
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_NAME)
model = AutoModelForVideoClassification.from_pretrained(MODEL_NAME)
model.eval()
# Load the complete Kinetics-400 mapping from CSV.
kinetics_id2label = load_kinetics_labels("kinetics-400-class-names.csv")
if kinetics_id2label:
print("Loaded complete Kinetics-400 mapping from CSV.")
else:
print("Warning: Could not load Kinetics-400 mapping; using default labels.")
model.config.id2label = kinetics_id2label if kinetics_id2label else model.config.id2label
# Determine the device.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Extract frames from the video.
frames = extract_frames(video_path, num_frames=16, target_size=(224, 224))
if len(frames) == 0:
return "No frames extracted from video.", None
# Preprocess the frames.
inputs = feature_extractor(frames, return_tensors="pt")
inputs = {key: val.to(device) for key, val in inputs.items()}
# Run inference.
with torch.no_grad():
outputs = model(**inputs)
# Get logits and compute probabilities.
logits = outputs.logits # shape: [batch_size, num_classes] with batch_size=1.
probs = torch.nn.functional.softmax(logits, dim=-1)[0]
# Get the top 5 predictions.
top_probs, top_indices = torch.topk(probs, k=5)
top_probs = top_probs.cpu().numpy()
top_indices = top_indices.cpu().numpy()
# Prepare textual results including both ID and label.
results = []
x_labels = []
for idx, prob in zip(top_indices, top_probs):
label = kinetics_id2label.get(str(idx), f"Class {idx}")
results.append(f"ID {idx} - {label}: {prob:.3f}")
x_labels.append(f"ID {idx}\n{label}")
results_text = "\n".join(results)
# Create a bar chart for the distribution.
fig, ax = plt.subplots(figsize=(8, 4))
ax.bar(x_labels, top_probs, color="skyblue")
ax.set_ylabel("Probability")
ax.set_title("Top 5 Prediction Distribution")
plt.xticks(rotation=45, ha="right")
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
plt.close(fig)
# Convert the BytesIO plot to a PIL Image.
chart_image = Image.open(buf)
return results_text, chart_image
def process_video(video_file):
if video_file is None:
return "No video provided.", None
result_text, plot_img = classify_video(video_file)
return result_text, plot_img
# Gradio interface definition.
demo = gr.Interface(
fn=process_video,
inputs=gr.Video(sources=["upload"], label="Upload Video Clip"),
outputs=[
gr.Textbox(label="Predicted Actions"),
gr.Image(label="Prediction Distribution")
],
title="Video Human Detection Demo using TimeSformer",
description=(
"Upload a video clip to see the top predicted human action labels using the TimeSformer model "
"(fine-tuned on Kinetics-400). The output displays each prediction's class ID and label, along with "
"a bar chart distribution of the top 5 predictions. A complete Kinetics-400 mapping is loaded from a CSV file."
)
)
if __name__ == "__main__":
demo.launch()