Spaces:
Sleeping
Sleeping
Commit
·
f74e2bf
1
Parent(s):
0261aeb
Update main.py
Browse files
main.py
CHANGED
@@ -15,7 +15,7 @@ from langchain.schema import StrOutputParser
|
|
15 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
16 |
from langchain.vectorstores import Pinecone
|
17 |
import pinecone
|
18 |
-
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
|
19 |
import pandas as pd
|
20 |
import numpy as np
|
21 |
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
@@ -95,7 +95,7 @@ def retriever_to_cache():
|
|
95 |
vectorstore = Pinecone.from_existing_index(
|
96 |
index_name=index_name, embedding=embeddings
|
97 |
)
|
98 |
-
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 30,"filter": {'categorie': {'$eq': 'OF'}}})
|
99 |
return retriever
|
100 |
|
101 |
@cl.set_chat_profiles
|
@@ -154,14 +154,15 @@ async def start():
|
|
154 |
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
155 |
|
156 |
########## Chain with streaming ##########
|
157 |
-
message_history = ChatMessageHistory()
|
158 |
-
memory = ConversationBufferMemory(
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
)
|
164 |
-
#llm = ChatAnthropic()
|
|
|
165 |
streaming_llm = ChatAnthropic(
|
166 |
streaming=True,
|
167 |
temperature=1,
|
@@ -170,6 +171,12 @@ async def start():
|
|
170 |
#question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
|
171 |
#doc_chain = load_qa_chain(streaming_llm, chain_type="stuff")
|
172 |
#relevant=retriever_to_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
qa = ConversationalRetrievalChain.from_llm(
|
174 |
streaming_llm,
|
175 |
chain_type="stuff",
|
@@ -178,6 +185,8 @@ async def start():
|
|
178 |
#question_generator=question_generator,
|
179 |
memory=memory,
|
180 |
return_source_documents=True,
|
|
|
|
|
181 |
)
|
182 |
|
183 |
cl.user_session.set("conversation_chain", qa)
|
|
|
15 |
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
|
16 |
from langchain.vectorstores import Pinecone
|
17 |
import pinecone
|
18 |
+
from langchain.memory import ChatMessageHistory, ConversationBufferMemory, ConversationSummaryBufferMemory
|
19 |
import pandas as pd
|
20 |
import numpy as np
|
21 |
from anthropic import Anthropic, HUMAN_PROMPT, AI_PROMPT
|
|
|
95 |
vectorstore = Pinecone.from_existing_index(
|
96 |
index_name=index_name, embedding=embeddings
|
97 |
)
|
98 |
+
retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 30,"filter": {'categorie': {'$eq': 'OF'}}, "include_metadata": True})
|
99 |
return retriever
|
100 |
|
101 |
@cl.set_chat_profiles
|
|
|
154 |
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
|
155 |
|
156 |
########## Chain with streaming ##########
|
157 |
+
#message_history = ChatMessageHistory()
|
158 |
+
#memory = ConversationBufferMemory(
|
159 |
+
# memory_key="chat_history",
|
160 |
+
# output_key="answer",
|
161 |
+
# chat_memory=message_history,
|
162 |
+
# return_messages=True,
|
163 |
+
#)
|
164 |
+
#llm = ChatAnthropic(temperature=0)
|
165 |
+
|
166 |
streaming_llm = ChatAnthropic(
|
167 |
streaming=True,
|
168 |
temperature=1,
|
|
|
171 |
#question_generator = LLMChain(llm=llm, prompt=CONDENSE_QUESTION_PROMPT)
|
172 |
#doc_chain = load_qa_chain(streaming_llm, chain_type="stuff")
|
173 |
#relevant=retriever_to_cache()
|
174 |
+
memory = ConversationSummaryBufferMemory(
|
175 |
+
llm=streaming_llm,
|
176 |
+
output_key='answer',
|
177 |
+
memory_key='chat_history',
|
178 |
+
return_messages=True
|
179 |
+
)
|
180 |
qa = ConversationalRetrievalChain.from_llm(
|
181 |
streaming_llm,
|
182 |
chain_type="stuff",
|
|
|
185 |
#question_generator=question_generator,
|
186 |
memory=memory,
|
187 |
return_source_documents=True,
|
188 |
+
get_chat_history=lambda h : h,
|
189 |
+
verbose=False
|
190 |
)
|
191 |
|
192 |
cl.user_session.set("conversation_chain", qa)
|