looker01202 commited on
Commit
ad54127
·
1 Parent(s): cef5bae

correct model load

Browse files
Files changed (1) hide show
  1. app.py +16 -10
app.py CHANGED
@@ -6,6 +6,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
6
 
7
  # Detect execution environment: Spaces runs as user 'gradio'
8
  is_space = (getpass.getuser() == "gradio")
 
 
9
 
10
  # Choose model checkpoints based on environment
11
  if is_space:
@@ -21,19 +23,21 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
21
 
22
  # Load tokenizer and model (with fallback on Spaces)
23
  def load_model():
24
- if not is_space:
25
- tokenizer = AutoTokenizer.from_pretrained(primary_checkpoint)
26
- model = AutoModelForCausalLM.from_pretrained(primary_checkpoint).to(device)
27
- return tokenizer, model, primary_checkpoint
28
  try:
29
  tokenizer = AutoTokenizer.from_pretrained(primary_checkpoint)
30
- model = AutoModelForCausalLM.from_pretrained(primary_checkpoint).to(device)
 
31
  return tokenizer, model, primary_checkpoint
32
- except Exception:
33
- # Fallback path on Spaces
34
- tokenizer = AutoTokenizer.from_pretrained(fallback_checkpoint)
35
- model = AutoModelForCausalLM.from_pretrained(fallback_checkpoint).to(device)
36
- return tokenizer, model, fallback_checkpoint
 
 
 
 
37
 
38
  tokenizer, model, model_name = load_model()
39
 
@@ -134,6 +138,8 @@ hotel_ids = [
134
  demo = gr.Blocks()
135
  with demo:
136
  gr.Markdown("### 🏨 Hotel Chatbot Demo")
 
 
137
  with gr.Row():
138
  hotel_selector = gr.Dropdown(hotel_ids, label="Choose a hotel", value=hotel_ids[0])
139
  chatbot = gr.Chatbot()
 
6
 
7
  # Detect execution environment: Spaces runs as user 'gradio'
8
  is_space = (getpass.getuser() == "gradio")
9
+ print("RUNNING AS USER:", getpass.getuser())
10
+
11
 
12
  # Choose model checkpoints based on environment
13
  if is_space:
 
23
 
24
  # Load tokenizer and model (with fallback on Spaces)
25
  def load_model():
26
+ print(f"🔍 Trying to load PRIMARY: {primary_checkpoint}")
 
 
 
27
  try:
28
  tokenizer = AutoTokenizer.from_pretrained(primary_checkpoint)
29
+ model = AutoModelForCausalLM.from_pretrained(primary_checkpoint).to(device)
30
+ print("✅ Loaded PRIMARY ✓")
31
  return tokenizer, model, primary_checkpoint
32
+ except Exception as e:
33
+ print("❌ PRIMARY failed:", e)
34
+ if fallback_checkpoint:
35
+ print(f"🔁 Falling back to {fallback_checkpoint}")
36
+ tokenizer = AutoTokenizer.from_pretrained(fallback_checkpoint)
37
+ model = AutoModelForCausalLM.from_pretrained(fallback_checkpoint).to(device)
38
+ print("✅ Loaded FALLBACK ✓")
39
+ return tokenizer, model, fallback_checkpoint
40
+ raise
41
 
42
  tokenizer, model, model_name = load_model()
43
 
 
138
  demo = gr.Blocks()
139
  with demo:
140
  gr.Markdown("### 🏨 Hotel Chatbot Demo")
141
+ gr.Markdown(f"Currently running: **{model_name}**", elem_id="model‑status")
142
+
143
  with gr.Row():
144
  hotel_selector = gr.Dropdown(hotel_ids, label="Choose a hotel", value=hotel_ids[0])
145
  chatbot = gr.Chatbot()