Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import BertTokenizer, BertModel
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Imposta il dispositivo
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
# Trasformazioni per le immagini
|
13 |
+
transform = transforms.Compose([
|
14 |
+
transforms.Resize((64, 64)),
|
15 |
+
transforms.ToTensor(),
|
16 |
+
])
|
17 |
+
|
18 |
+
# Definizione del modello Animator2D (uguale al training)
|
19 |
+
class Animator2DModel(torch.nn.Module):
|
20 |
+
def __init__(self):
|
21 |
+
super(Animator2DModel, self).__init__()
|
22 |
+
self.text_encoder = BertModel.from_pretrained('bert-base-uncased')
|
23 |
+
self.image_encoder = torch.nn.Sequential(
|
24 |
+
torch.nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
|
25 |
+
torch.nn.ReLU(),
|
26 |
+
torch.nn.MaxPool2d(2),
|
27 |
+
torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
|
28 |
+
torch.nn.ReLU(),
|
29 |
+
torch.nn.MaxPool2d(2)
|
30 |
+
)
|
31 |
+
self.decoder = torch.nn.LSTM(input_size=768 + 128, hidden_size=256, num_layers=2, batch_first=True)
|
32 |
+
self.frame_generator = torch.nn.Linear(256, 64 * 64 * 3)
|
33 |
+
|
34 |
+
def forward(self, input_ids, attention_mask, base_frame, num_frames):
|
35 |
+
text_features = self.text_encoder(input_ids, attention_mask=attention_mask).pooler_output
|
36 |
+
image_features = self.image_encoder(base_frame).flatten(start_dim=1)
|
37 |
+
combined_features = torch.cat((text_features, image_features), dim=1)
|
38 |
+
combined_features = combined_features.unsqueeze(1).repeat(1, num_frames, 1)
|
39 |
+
output, _ = self.decoder(combined_features)
|
40 |
+
generated_frames = self.frame_generator(output)
|
41 |
+
return generated_frames.view(-1, num_frames, 3, 64, 64)
|
42 |
+
|
43 |
+
# Funzione per generare i frame
|
44 |
+
def generate_animation(description, base_frame_image, num_frames=3):
|
45 |
+
# Carica il modello da Hugging Face
|
46 |
+
model = Animator2DModel().to(device)
|
47 |
+
model.load_state_dict(torch.hub.load_state_dict_from_url(
|
48 |
+
"https://huggingface.co/Lod34/Animator2D-v1.0.0/resolve/main/animator2d_v1_0_0.pth",
|
49 |
+
map_location=device))
|
50 |
+
model.eval()
|
51 |
+
|
52 |
+
# Prepara il testo
|
53 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
54 |
+
inputs = tokenizer(description, return_tensors='pt', padding='max_length',
|
55 |
+
truncation=True, max_length=512)
|
56 |
+
input_ids = inputs['input_ids'].to(device)
|
57 |
+
attention_mask = inputs['attention_mask'].to(device)
|
58 |
+
|
59 |
+
# Prepara l'immagine di base
|
60 |
+
base_frame = transform(base_frame_image).unsqueeze(0).to(device)
|
61 |
+
|
62 |
+
# Genera i frame
|
63 |
+
with torch.no_grad():
|
64 |
+
generated_frames = model(input_ids, attention_mask, base_frame, num_frames)
|
65 |
+
|
66 |
+
# Converte i frame generati in immagini PIL
|
67 |
+
generated_frames = generated_frames.squeeze(0).cpu().numpy()
|
68 |
+
output_frames = []
|
69 |
+
for i in range(num_frames):
|
70 |
+
frame = generated_frames[i].transpose(1, 2, 0) # Da (C, H, W) a (H, W, C)
|
71 |
+
frame = np.clip(frame, 0, 1) # Normalizza tra 0 e 1
|
72 |
+
frame = (frame * 255).astype(np.uint8) # Converte in formato immagine
|
73 |
+
output_frames.append(Image.fromarray(frame))
|
74 |
+
|
75 |
+
return output_frames
|
76 |
+
|
77 |
+
# Interfaccia Gradio
|
78 |
+
with gr.Blocks(title="Animator2D-v1.0.0") as demo:
|
79 |
+
gr.Markdown("# Animator2D-v1.0.0\nInserisci una descrizione e un'immagine di base per generare un'animazione!")
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
with gr.Column():
|
83 |
+
description_input = gr.Textbox(label="Descrizione dell'animazione", placeholder="Es: 'A character jumping'")
|
84 |
+
base_frame_input = gr.Image(label="Immagine di base", type="pil")
|
85 |
+
num_frames_input = gr.Slider(1, 5, value=3, step=1, label="Numero di frame")
|
86 |
+
submit_button = gr.Button("Genera Animazione")
|
87 |
+
|
88 |
+
with gr.Column():
|
89 |
+
output_gallery = gr.Gallery(label="Frame generati", show_label=True)
|
90 |
+
|
91 |
+
submit_button.click
|